Non-Abelian sigma models from Yang–Mills theory compactified on a circle

We consider SU(N) Yang–Mills theory on R2,1×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang–Mills action reduces to the action of a sigma model on R2,1 whose target space is a 2(N−1)-dimensional torus modulo the Weyl-group action. We argue that there is free...

Full description

Bibliographic Details
Main Authors: Tatiana A. Ivanova, Olaf Lechtenfeld, Alexander D. Popov
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269318302971
_version_ 1819083751068532736
author Tatiana A. Ivanova
Olaf Lechtenfeld
Alexander D. Popov
author_facet Tatiana A. Ivanova
Olaf Lechtenfeld
Alexander D. Popov
author_sort Tatiana A. Ivanova
collection DOAJ
description We consider SU(N) Yang–Mills theory on R2,1×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang–Mills action reduces to the action of a sigma model on R2,1 whose target space is a 2(N−1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU(N)×SU(N)/ZN. The latter is the direct product of SU(N) and its Langlands dual SU(N)/ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.
first_indexed 2024-12-21T20:37:32Z
format Article
id doaj.art-00e6a79f781140cca6bbeac2cc7ff3a7
institution Directory Open Access Journal
issn 0370-2693
language English
last_indexed 2024-12-21T20:37:32Z
publishDate 2018-06-01
publisher Elsevier
record_format Article
series Physics Letters B
spelling doaj.art-00e6a79f781140cca6bbeac2cc7ff3a72022-12-21T18:51:04ZengElsevierPhysics Letters B0370-26932018-06-01781322326Non-Abelian sigma models from Yang–Mills theory compactified on a circleTatiana A. Ivanova0Olaf Lechtenfeld1Alexander D. Popov2Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, RussiaInstitut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany; Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany; Corresponding author.Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, GermanyWe consider SU(N) Yang–Mills theory on R2,1×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang–Mills action reduces to the action of a sigma model on R2,1 whose target space is a 2(N−1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU(N)×SU(N)/ZN. The latter is the direct product of SU(N) and its Langlands dual SU(N)/ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.http://www.sciencedirect.com/science/article/pii/S0370269318302971
spellingShingle Tatiana A. Ivanova
Olaf Lechtenfeld
Alexander D. Popov
Non-Abelian sigma models from Yang–Mills theory compactified on a circle
Physics Letters B
title Non-Abelian sigma models from Yang–Mills theory compactified on a circle
title_full Non-Abelian sigma models from Yang–Mills theory compactified on a circle
title_fullStr Non-Abelian sigma models from Yang–Mills theory compactified on a circle
title_full_unstemmed Non-Abelian sigma models from Yang–Mills theory compactified on a circle
title_short Non-Abelian sigma models from Yang–Mills theory compactified on a circle
title_sort non abelian sigma models from yang mills theory compactified on a circle
url http://www.sciencedirect.com/science/article/pii/S0370269318302971
work_keys_str_mv AT tatianaaivanova nonabeliansigmamodelsfromyangmillstheorycompactifiedonacircle
AT olaflechtenfeld nonabeliansigmamodelsfromyangmillstheorycompactifiedonacircle
AT alexanderdpopov nonabeliansigmamodelsfromyangmillstheorycompactifiedonacircle