Experimental Evaluation of Three Value Recommendation Methods in Interactive Configuration

The present work deals with the recommendation of values in interactive configuration, with no prior knowledge about the user, but given a list of products previously configured and bought by other users ("sales histories"). The basic idea is to recommend, for a given variable at a...

Full description

Bibliographic Details
Main Authors: Hélène Fargier, Pierre-François Gimenez, Jérôme Mengin
Format: Article
Language:English
Published: Graz University of Technology 2020-03-01
Series:Journal of Universal Computer Science
Subjects:
Online Access:https://lib.jucs.org/article/24003/download/pdf/
Description
Summary:The present work deals with the recommendation of values in interactive configuration, with no prior knowledge about the user, but given a list of products previously configured and bought by other users ("sales histories"). The basic idea is to recommend, for a given variable at a given step of the configuration process, a value that has been chosen by other users in a similar context, where the context is defined by the variables that have already been decided, and the values that the current user has chosen for these variables. From this point, two directions have been explored. The first one is to select a set of similar configurations in the sales history (typically, the k closest ones, using a distance measure) and to compute the best recommendation from this set - this is the line proposed by [Coster et al., 2002]. The second one, that we propose here, is to learn a model from the entire sample as representation of the users' preferences, and to use it to recommend a pertinent value; three families of models are experimented: the Bayesian networks, the naive Bayesian networks and the lexicographic preferences trees.
ISSN:0948-6968