The value of blood oxygenation level-dependent (BOLD) MR imaging in differentiation of renal solid mass and grading of renal cell carcinoma (RCC): analysis based on the largest cross-sectional area versus the entire whole tumour.

OBJECTIVES:To study the value of assessing renal masses using different methods in parameter approaches and to determine whether BOLD MRI is helpful in differentiating RCC from benign renal masses, differentiating clear-cell RCC from renal masses other than clear-cell RCC and determining the tumour...

Full description

Bibliographic Details
Main Authors: Guang-Yu Wu, Shi-Teng Suo, Qing Lu, Jin Zhang, Wan-Qiu Zhu, Jian-Rong Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4398373?pdf=render
Description
Summary:OBJECTIVES:To study the value of assessing renal masses using different methods in parameter approaches and to determine whether BOLD MRI is helpful in differentiating RCC from benign renal masses, differentiating clear-cell RCC from renal masses other than clear-cell RCC and determining the tumour grade. METHODS:Ninety-five patients with 139 renal masses (93 malignant and 46 benign) who underwent abdominal BOLD MRI were enrolled. R2* values were derived from the largest cross-section (R2*largest) and from the whole tumour (R2*whole). Intra-observer and inter-observer agreements were analysed based on two measurements by the same observer and the first measurement from each observer, respectively, and these agreements are reported with intra-class correlation coefficients and 95% confidence intervals. The diagnostic value of the R2* value in the evaluation was assessed with receiver-operating characteristic analysis. RESULTS:The intra-observer agreement was very good for R2*largest and R2*whole (all > 0.8). The inter-observer agreement of R2*whole (0.75, 95% confidence interval: 0.69~0.79) was good and was significantly improved compared with the R2*largest (0.61, 95% confidence interval: 0.52~0.68), as there was no overlap in the 95% confidence interval of the intra-class correlation coefficients. The diagnostic value in differentiating renal cell carcinoma from benign lesions with R2*whole (AUC=0.79/0.78[observer1/observer2]) and R2*largest (AUC=0.75[observer1]) was good and significantly higher (p=0.01 for R2*largest[observer2] vs R2*whole[observer2], p<0.01 for R2*whole[observer1] vs R2*largest[observer2]) than R2*largest for observer 2 (AUC=0.64). For the grading of clear-cell RCC, both R2*whole and R2*largest were good (all > 0.7) and were not significantly different (p=0.89/0.93 for R2*largest vs R2*whole[observer1/observer2], 0.96 for R2*whole[observer1] vs R2*largest[observer2] and 0.96 for R2*whole [observer2] vs R2*largest[observer1]). CONCLUSIONS:BOLD MRI could provide a feasible parameter for differentiating renal cell carcinoma from benign renal masses and for predicting clear-cell renal cell carcinoma grading. Compared with the largest cross-section, assessing the whole tumour provides better inter-observer agreement in parameter measurement for differentiating renal cell carcinoma from benign renal masses.
ISSN:1932-6203