Synthesis of Chitosan Oligosaccharide-Loaded Glycyrrhetinic Acid Functionalized Mesoporous Silica Nanoparticles and In Vitro Verification of the Treatment of APAP-Induced Liver Injury

Objective: the study was to find a suitable treatment for acute drug-induced liver injury. The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes and higher loads. Methods: firstly, uniformly dispersed three-dimensional dendritic mesoporous silica nanosp...

Full description

Bibliographic Details
Main Authors: Xinghua Guo, Chengcheng Zhang, Yan Bai, Qishi Che, Hua Cao, Jiao Guo, Zhengquan Su
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/10/4147
Description
Summary:Objective: the study was to find a suitable treatment for acute drug-induced liver injury. The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes and higher loads. Methods: firstly, uniformly dispersed three-dimensional dendritic mesoporous silica nanospheres (MSNs) were synthesized. Glycyrrhetinic acid (GA) was covalently modified on MSN surfaces through amide bond and then loaded with COSM to form drug-loaded nanoparticles (COSM@MSN-NH<sub>2</sub>-GA). The constructed drug-loaded nano-delivery system was determined by characterization analysis. Finally, the effect of nano-drug particles on cell viability was evaluated and the cell uptake in vitro was observed. Results: GA was successfully modified to obtain the spherical nano-carrier MSN-NH<sub>2</sub>-GA (≤200 nm). The neutral surface charge improves its biocompatibility. MSN-NH<sub>2</sub>-GA has high drug loading (28.36% ± 1.00) because of its suitable specific surface area and pore volume. In vitro cell experiments showed that COSM@MSN-NH<sub>2</sub>-GA significantly enhanced the uptake of liver cells (LO2) and decreased the AST and ALT indexes. Conclusion: this study demonstrated for the first time that formulation and delivery schemes using natural drug COSM and nanocarrier MSN have a protective effect on APAP-induced hepatocyte injury. This result provides a potential nano-delivery scheme for the targeted therapy of acute drug-induced liver injury.
ISSN:1420-3049