Summary: | More than 40 yeast strains were isolated from various types of plant biomass and then evaluated for potential applications in biotechnological processes conducted at low temperature. Adaptation to low temperature was tested by passaging the isolates at decreasing temperatures, from 30 to 15 °C. Only the strains that were able to adapt to the final temperature and reached the stationary growth phase relatively quickly were submitted to further experimentation. These included eight environmental yeast isolates from four types of materials of plant origin: wheat, rye, and cucumber, containing glucose, fructose, sucrose, and starch; yeast-fermentable sugars; red beetroot, containing large amounts of glucose and fructose; and fruits (grapes and apples) containing glucose, fructose, and sucrose. The strains were identified and then subjected to a series of experiments to assess their suitability for use in low-temperature biotechnological industrial processes incorporating microbial biomass. The growth dynamics and assimilation profiles of the yeast strains were investigated, as well as their ability to produce volatile compounds.
|