On Gradings of the Operator Algebra Generated by Mapping and Multipliers

The operator algebra generated by mapping on a countable set and multipliers is considered. The defined mapping induces a family of partial isometries satisfying some relations. These isometries, as well as the multipliers, are the generators of the investigated algebra. We equip the algebra with a...

Full description

Bibliographic Details
Main Author: E.V. Patrin
Format: Article
Language:English
Published: Kazan Federal University 2015-12-01
Series:Учёные записки Казанского университета: Серия Физико-математические науки
Subjects:
Online Access:https://kpfu.ru/portal/docs/F277760406/157_4_phys_mat_5.pdf
_version_ 1826906510092926976
author E.V. Patrin
author_facet E.V. Patrin
author_sort E.V. Patrin
collection DOAJ
description The operator algebra generated by mapping on a countable set and multipliers is considered. The defined mapping induces a family of partial isometries satisfying some relations. These isometries, as well as the multipliers, are the generators of the investigated algebra. We equip the algebra with a torus action and consider the corresponding covariant system.
first_indexed 2024-04-11T06:57:23Z
format Article
id doaj.art-011a443a01b74e8a8c67deeccb860222
institution Directory Open Access Journal
issn 2541-7746
2500-2198
language English
last_indexed 2025-02-17T08:48:18Z
publishDate 2015-12-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета: Серия Физико-математические науки
spelling doaj.art-011a443a01b74e8a8c67deeccb8602222025-01-02T20:31:37ZengKazan Federal UniversityУчёные записки Казанского университета: Серия Физико-математические науки2541-77462500-21982015-12-0115745666On Gradings of the Operator Algebra Generated by Mapping and MultipliersE.V. Patrin0Kazan Federal University, Kazan, 420008 RussiaThe operator algebra generated by mapping on a countable set and multipliers is considered. The defined mapping induces a family of partial isometries satisfying some relations. These isometries, as well as the multipliers, are the generators of the investigated algebra. We equip the algebra with a torus action and consider the corresponding covariant system.https://kpfu.ru/portal/docs/F277760406/157_4_phys_mat_5.pdfc∗-algebrapartial isometrymultipliergroup action on c∗-algebrafixed-point subalgebra
spellingShingle E.V. Patrin
On Gradings of the Operator Algebra Generated by Mapping and Multipliers
Учёные записки Казанского университета: Серия Физико-математические науки
c∗-algebra
partial isometry
multiplier
group action on c∗-algebra
fixed-point subalgebra
title On Gradings of the Operator Algebra Generated by Mapping and Multipliers
title_full On Gradings of the Operator Algebra Generated by Mapping and Multipliers
title_fullStr On Gradings of the Operator Algebra Generated by Mapping and Multipliers
title_full_unstemmed On Gradings of the Operator Algebra Generated by Mapping and Multipliers
title_short On Gradings of the Operator Algebra Generated by Mapping and Multipliers
title_sort on gradings of the operator algebra generated by mapping and multipliers
topic c∗-algebra
partial isometry
multiplier
group action on c∗-algebra
fixed-point subalgebra
url https://kpfu.ru/portal/docs/F277760406/157_4_phys_mat_5.pdf
work_keys_str_mv AT evpatrin ongradingsoftheoperatoralgebrageneratedbymappingandmultipliers