Spider Lightning Characterization: Integrating Optical, NLDN, and GLM Detection

Here, we investigate the characteristics of spider lightning analyzing individual lightning flashes as well as the overall electric storm system. From July to November 2022, optical camera systems captured the visually spectacular spider lightning in Southwest Florida. The aspects and activities of...

Full description

Bibliographic Details
Main Authors: Gilbert Green, Naomi Watanabe
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/7/1191
Description
Summary:Here, we investigate the characteristics of spider lightning analyzing individual lightning flashes as well as the overall electric storm system. From July to November 2022, optical camera systems captured the visually spectacular spider lightning in Southwest Florida. The aspects and activities of the discharges were analyzed by merging the video images with lightning flash data from the National Detection Lightning Network (NLDN) and the Geostationary Lightning Mapper (GLM). Spider lightning discharges primarily occurred during the later stages of the overall lightning activity when there was a decrease in the flash count and flash locations were drifting apart. The propagation path of the spider discharge was predominantly luminous and exhibited an extended duration, ranging from 300 ms to 1720 ms, with most of the path remaining continuously illuminated. Occasionally, observed discharges produced cloud-to-ground flashes (CG) along their propagation paths. This study represents the first attempt to utilize video images, NLDN, and GLM data to investigate the correlation between visual observed spider lightning events and detection networks. These combined datasets facilitated the characterization of the observed spider lightning discharges.
ISSN:2073-4433