Cavity-type hypersonic phononic crystals

We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control...

Full description

Bibliographic Details
Main Authors: A Sato, Y Pennec, T Yanagishita, H Masuda, W Knoll, B Djafari-Rouhani, G Fytas
Format: Article
Language:English
Published: IOP Publishing 2012-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/14/11/113032
_version_ 1827874364663529472
author A Sato
Y Pennec
T Yanagishita
H Masuda
W Knoll
B Djafari-Rouhani
G Fytas
author_facet A Sato
Y Pennec
T Yanagishita
H Masuda
W Knoll
B Djafari-Rouhani
G Fytas
author_sort A Sato
collection DOAJ
description We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.
first_indexed 2024-03-12T16:51:12Z
format Article
id doaj.art-0128929f05d54a9bb43dd2ad0afeeaca
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:51:12Z
publishDate 2012-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-0128929f05d54a9bb43dd2ad0afeeaca2023-08-08T11:09:49ZengIOP PublishingNew Journal of Physics1367-26302012-01-01141111303210.1088/1367-2630/14/11/113032Cavity-type hypersonic phononic crystalsA Sato0Y Pennec1T Yanagishita2H Masuda3W Knoll4B Djafari-Rouhani5G Fytas6Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, GermanyInstitut d'Electronique de Microélectronique et de Nanotechnologie , UMR CNRS 8520, Université de Lille 1, Sciences et Technologies, 59652 Villeneuve d'Ascq, FranceDepartment of Applied Chemistry, School of Engineering, Tokyo Metropolitan University , 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, JapanDepartment of Applied Chemistry, School of Engineering, Tokyo Metropolitan University , 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, JapanAustrian Research Centers GmbH, Donau-City-Street 1, 1220 Vienna, AustriaInstitut d'Electronique de Microélectronique et de Nanotechnologie , UMR CNRS 8520, Université de Lille 1, Sciences et Technologies, 59652 Villeneuve d'Ascq, FranceMax Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany; Department of Materials Science and FORTH, 71110 Heraklion, GreeceWe report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.https://doi.org/10.1088/1367-2630/14/11/113032
spellingShingle A Sato
Y Pennec
T Yanagishita
H Masuda
W Knoll
B Djafari-Rouhani
G Fytas
Cavity-type hypersonic phononic crystals
New Journal of Physics
title Cavity-type hypersonic phononic crystals
title_full Cavity-type hypersonic phononic crystals
title_fullStr Cavity-type hypersonic phononic crystals
title_full_unstemmed Cavity-type hypersonic phononic crystals
title_short Cavity-type hypersonic phononic crystals
title_sort cavity type hypersonic phononic crystals
url https://doi.org/10.1088/1367-2630/14/11/113032
work_keys_str_mv AT asato cavitytypehypersonicphononiccrystals
AT ypennec cavitytypehypersonicphononiccrystals
AT tyanagishita cavitytypehypersonicphononiccrystals
AT hmasuda cavitytypehypersonicphononiccrystals
AT wknoll cavitytypehypersonicphononiccrystals
AT bdjafarirouhani cavitytypehypersonicphononiccrystals
AT gfytas cavitytypehypersonicphononiccrystals