Cavity-type hypersonic phononic crystals
We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2012-01-01
|
Series: | New Journal of Physics |
Online Access: | https://doi.org/10.1088/1367-2630/14/11/113032 |
_version_ | 1827874364663529472 |
---|---|
author | A Sato Y Pennec T Yanagishita H Masuda W Knoll B Djafari-Rouhani G Fytas |
author_facet | A Sato Y Pennec T Yanagishita H Masuda W Knoll B Djafari-Rouhani G Fytas |
author_sort | A Sato |
collection | DOAJ |
description | We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. |
first_indexed | 2024-03-12T16:51:12Z |
format | Article |
id | doaj.art-0128929f05d54a9bb43dd2ad0afeeaca |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-12T16:51:12Z |
publishDate | 2012-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-0128929f05d54a9bb43dd2ad0afeeaca2023-08-08T11:09:49ZengIOP PublishingNew Journal of Physics1367-26302012-01-01141111303210.1088/1367-2630/14/11/113032Cavity-type hypersonic phononic crystalsA Sato0Y Pennec1T Yanagishita2H Masuda3W Knoll4B Djafari-Rouhani5G Fytas6Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, GermanyInstitut d'Electronique de Microélectronique et de Nanotechnologie , UMR CNRS 8520, Université de Lille 1, Sciences et Technologies, 59652 Villeneuve d'Ascq, FranceDepartment of Applied Chemistry, School of Engineering, Tokyo Metropolitan University , 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, JapanDepartment of Applied Chemistry, School of Engineering, Tokyo Metropolitan University , 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, JapanAustrian Research Centers GmbH, Donau-City-Street 1, 1220 Vienna, AustriaInstitut d'Electronique de Microélectronique et de Nanotechnologie , UMR CNRS 8520, Université de Lille 1, Sciences et Technologies, 59652 Villeneuve d'Ascq, FranceMax Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany; Department of Materials Science and FORTH, 71110 Heraklion, GreeceWe report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter.https://doi.org/10.1088/1367-2630/14/11/113032 |
spellingShingle | A Sato Y Pennec T Yanagishita H Masuda W Knoll B Djafari-Rouhani G Fytas Cavity-type hypersonic phononic crystals New Journal of Physics |
title | Cavity-type hypersonic phononic crystals |
title_full | Cavity-type hypersonic phononic crystals |
title_fullStr | Cavity-type hypersonic phononic crystals |
title_full_unstemmed | Cavity-type hypersonic phononic crystals |
title_short | Cavity-type hypersonic phononic crystals |
title_sort | cavity type hypersonic phononic crystals |
url | https://doi.org/10.1088/1367-2630/14/11/113032 |
work_keys_str_mv | AT asato cavitytypehypersonicphononiccrystals AT ypennec cavitytypehypersonicphononiccrystals AT tyanagishita cavitytypehypersonicphononiccrystals AT hmasuda cavitytypehypersonicphononiccrystals AT wknoll cavitytypehypersonicphononiccrystals AT bdjafarirouhani cavitytypehypersonicphononiccrystals AT gfytas cavitytypehypersonicphononiccrystals |