Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary

We first consider the damped wave inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi...

Full description

Bibliographic Details
Main Authors: Areej Bin Sultan, Mohamed Jleli, Bessem Samet
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/258
_version_ 1797504462095384576
author Areej Bin Sultan
Mohamed Jleli
Bessem Samet
author_facet Areej Bin Sultan
Mohamed Jleli
Bessem Samet
author_sort Areej Bin Sultan
collection DOAJ
description We first consider the damped wave inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>≥</mo><msup><mi>x</mi><mi>σ</mi></msup><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, under the Dirichlet boundary conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>L</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>(</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> We establish sufficient conditions depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>, <i>p</i>, the initial conditions, and the boundary conditions, under which the considered problem admits no global solution. Two cases of boundary conditions are investigated: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>t</mi><mi>γ</mi></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>></mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Next, we extend our study to the time-fractional analogue of the above problem, namely, the time-fractional damped wave inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><msup><mo>∂</mo><mi>α</mi></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mi>α</mi></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mo>∂</mo><mi>β</mi></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mi>β</mi></msup></mrow></mfrac><mo>≥</mo><msup><mi>x</mi><mi>σ</mi></msup><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mo>∂</mo><mi>τ</mi></msup><mrow><mo>∂</mo><msup><mi>t</mi><mi>τ</mi></msup></mrow></mfrac></semantics></math></inline-formula> is the time-Caputo fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>∈</mo><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></semantics></math></inline-formula>. Our approach is based on the test function method. Namely, a judicious choice of test functions is made, taking in consideration the boundedness of the domain and the boundary conditions. Comparing with previous existing results in the literature, our results hold without assuming that the initial values are large with respect to a certain norm.
first_indexed 2024-03-10T04:04:54Z
format Article
id doaj.art-013192c159564e4d884ffc6061e68a38
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T04:04:54Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-013192c159564e4d884ffc6061e68a382023-11-23T08:24:27ZengMDPI AGFractal and Fractional2504-31102021-12-015425810.3390/fractalfract5040258Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the BoundaryAreej Bin Sultan0Mohamed Jleli1Bessem Samet2Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiaWe first consider the damped wave inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>t</mi></mrow></mfrac><mo>≥</mo><msup><mi>x</mi><mi>σ</mi></msup><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>, under the Dirichlet boundary conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>,</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>L</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>(</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> We establish sufficient conditions depending on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>, <i>p</i>, the initial conditions, and the boundary conditions, under which the considered problem admits no global solution. Two cases of boundary conditions are investigated: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>t</mi><mi>γ</mi></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>></mo><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Next, we extend our study to the time-fractional analogue of the above problem, namely, the time-fractional damped wave inequality <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><mrow><msup><mo>∂</mo><mi>α</mi></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mi>α</mi></msup></mrow></mfrac><mo>−</mo><mfrac><mrow><msup><mo>∂</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mo>∂</mo><mi>β</mi></msup><mi>u</mi></mrow><mrow><mo>∂</mo><msup><mi>t</mi><mi>β</mi></msup></mrow></mfrac><mo>≥</mo><msup><mi>x</mi><mi>σ</mi></msup><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mi>p</mi></msup><mo>,</mo><mspace width="1.em"></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.166667em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>L</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mo>∂</mo><mi>τ</mi></msup><mrow><mo>∂</mo><msup><mi>t</mi><mi>τ</mi></msup></mrow></mfrac></semantics></math></inline-formula> is the time-Caputo fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>∈</mo><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></semantics></math></inline-formula>. Our approach is based on the test function method. Namely, a judicious choice of test functions is made, taking in consideration the boundedness of the domain and the boundary conditions. Comparing with previous existing results in the literature, our results hold without assuming that the initial values are large with respect to a certain norm.https://www.mdpi.com/2504-3110/5/4/258time-fractional damped wave inequalitiesbounded domainsingularitynonexistence
spellingShingle Areej Bin Sultan
Mohamed Jleli
Bessem Samet
Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
Fractal and Fractional
time-fractional damped wave inequalities
bounded domain
singularity
nonexistence
title Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
title_full Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
title_fullStr Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
title_full_unstemmed Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
title_short Nonexistence of Global Solutions to Time-Fractional Damped Wave Inequalities in Bounded Domains with a Singular Potential on the Boundary
title_sort nonexistence of global solutions to time fractional damped wave inequalities in bounded domains with a singular potential on the boundary
topic time-fractional damped wave inequalities
bounded domain
singularity
nonexistence
url https://www.mdpi.com/2504-3110/5/4/258
work_keys_str_mv AT areejbinsultan nonexistenceofglobalsolutionstotimefractionaldampedwaveinequalitiesinboundeddomainswithasingularpotentialontheboundary
AT mohamedjleli nonexistenceofglobalsolutionstotimefractionaldampedwaveinequalitiesinboundeddomainswithasingularpotentialontheboundary
AT bessemsamet nonexistenceofglobalsolutionstotimefractionaldampedwaveinequalitiesinboundeddomainswithasingularpotentialontheboundary