Uniform Circular-Array-Based Borehole Pulsed Eddy-Current System for Asymmetry Defect Inspection in Downhole Casings

The inspection of wellbore casings has been extensively investigated owing to the increasing concern for safety in oil and gas production. However, efficient techniques for inspecting asymmetry defects have not been achieved. In this study, we developed a uniform circular array (UCA) to address the...

Full description

Bibliographic Details
Main Authors: Ling Yang, Bo Dang, Zhiping Ren, Changzan Liu, Jingxin Dang, Yang Zhao, Baixin An, Ruirong Dang
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/13/2030
Description
Summary:The inspection of wellbore casings has been extensively investigated owing to the increasing concern for safety in oil and gas production. However, efficient techniques for inspecting asymmetry defects have not been achieved. In this study, we developed a uniform circular array (UCA) to address the problem of borehole pulsed eddy current (PEC) techniques for asymmetry defect inspection in downhole casings. Based on the borehole PEC system model, the UCA developed with multiple independent probes was designed to achieve asymmetry defect inspection, and the three-dimensional magnetic field data of borehole depths, circumferential azimuths, and sampling times could be obtained. Furthermore, a multichannel data acquisition circuit, which guarantees downhole operation at 150 °C, was developed for the synthesized UCA. Using azimuth dimension information from the synthesized UCA at a certain borehole depth, we obtained an inspection approach for the width and penetration depth of asymmetry defects in the circumferential and radial directions, respectively. Simulations and field experiments were conducted, and the results demonstrate the effectiveness of the proposed method in inspecting asymmetry defects.
ISSN:2079-9292