Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology

McArdle disease is a rare autosomal recessive disorder caused by mutations in the <i>PYGM</i> gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy...

Full description

Bibliographic Details
Main Authors: María del Carmen Ortuño-Costela, Victoria Cerrada, Ana Moreno-Izquierdo, Inés García-Consuegra, Camille Laberthonnière, Mégane Delourme, Rafael Garesse, Joaquín Arenas, Carla Fuster García, Gema García García, José María Millán, Frédérique Magdinier, María Esther Gallardo
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/22/13964
_version_ 1797465073797562368
author María del Carmen Ortuño-Costela
Victoria Cerrada
Ana Moreno-Izquierdo
Inés García-Consuegra
Camille Laberthonnière
Mégane Delourme
Rafael Garesse
Joaquín Arenas
Carla Fuster García
Gema García García
José María Millán
Frédérique Magdinier
María Esther Gallardo
author_facet María del Carmen Ortuño-Costela
Victoria Cerrada
Ana Moreno-Izquierdo
Inés García-Consuegra
Camille Laberthonnière
Mégane Delourme
Rafael Garesse
Joaquín Arenas
Carla Fuster García
Gema García García
José María Millán
Frédérique Magdinier
María Esther Gallardo
author_sort María del Carmen Ortuño-Costela
collection DOAJ
description McArdle disease is a rare autosomal recessive disorder caused by mutations in the <i>PYGM</i> gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the <i>PYGM</i> gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of <i>PYGM</i> expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.
first_indexed 2024-03-09T18:17:16Z
format Article
id doaj.art-01480cb12c914ad5a69edeff24e3fe15
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-09T18:17:16Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-01480cb12c914ad5a69edeff24e3fe152023-11-24T08:36:21ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672022-11-0123221396410.3390/ijms232213964Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC TechnologyMaría del Carmen Ortuño-Costela0Victoria Cerrada1Ana Moreno-Izquierdo2Inés García-Consuegra3Camille Laberthonnière4Mégane Delourme5Rafael Garesse6Joaquín Arenas7Carla Fuster García8Gema García García9José María Millán10Frédérique Magdinier11María Esther Gallardo12Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainGrupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainServicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainLaboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainAix-Marseille University, INSERM, MMG, 13385 Marseille, FranceAix-Marseille University, INSERM, MMG, 13385 Marseille, FranceDepartamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, SpainLaboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainCentro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, SpainCentro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, SpainCentro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, SpainAix-Marseille University, INSERM, MMG, 13385 Marseille, FranceGrupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, SpainMcArdle disease is a rare autosomal recessive disorder caused by mutations in the <i>PYGM</i> gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the <i>PYGM</i> gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of <i>PYGM</i> expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.https://www.mdpi.com/1422-0067/23/22/13964iPSCsMcArdle disease<i>PYGM</i>disease modellingskeletal muscle differentiationgene editing
spellingShingle María del Carmen Ortuño-Costela
Victoria Cerrada
Ana Moreno-Izquierdo
Inés García-Consuegra
Camille Laberthonnière
Mégane Delourme
Rafael Garesse
Joaquín Arenas
Carla Fuster García
Gema García García
José María Millán
Frédérique Magdinier
María Esther Gallardo
Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
International Journal of Molecular Sciences
iPSCs
McArdle disease
<i>PYGM</i>
disease modelling
skeletal muscle differentiation
gene editing
title Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
title_full Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
title_fullStr Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
title_full_unstemmed Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
title_short Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology
title_sort generation of the first human in vitro model for mcardle disease based on ipsc technology
topic iPSCs
McArdle disease
<i>PYGM</i>
disease modelling
skeletal muscle differentiation
gene editing
url https://www.mdpi.com/1422-0067/23/22/13964
work_keys_str_mv AT mariadelcarmenortunocostela generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT victoriacerrada generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT anamorenoizquierdo generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT inesgarciaconsuegra generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT camillelaberthonniere generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT meganedelourme generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT rafaelgaresse generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT joaquinarenas generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT carlafustergarcia generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT gemagarciagarcia generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT josemariamillan generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT frederiquemagdinier generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology
AT mariaesthergallardo generationofthefirsthumaninvitromodelformcardlediseasebasedonipsctechnology