A strontium isoscape of inland southeastern Australia

<p>The values and distribution patterns of the strontium (Sr) isotope ratio <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow...

Full description

Bibliographic Details
Main Authors: P. de Caritat, A. Dosseto, F. Dux
Format: Article
Language:English
Published: Copernicus Publications 2022-09-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/14/4271/2022/essd-14-4271-2022.pdf
Description
Summary:<p>The values and distribution patterns of the strontium (Sr) isotope ratio <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7f4baae305f328d12fa7f61ee32c1202"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00001.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00001.png"/></svg:svg></span></span> in Earth surface materials are of use in the geological, environmental, and social sciences. Ultimately, the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fc572d0bea75b4287a5b3ee79eca9f85"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00002.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00002.png"/></svg:svg></span></span> ratios of soils and everything that lives in and on them are inherited from the rocks that are the parent materials of the soil's components. In Australia, there are few large-scale surveys of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e4467c5528b2ace664e23d19756eb310"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00003.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00003.png"/></svg:svg></span></span> available, and here we report on a new, low-density dataset using 112 catchment outlet (floodplain) sediment samples covering 529 000 km<span class="inline-formula"><sup>2</sup></span> of inland southeastern Australia (South Australia, New South Wales, Victoria). The coarse (<span class="inline-formula"><i>&lt;</i>2</span> mm) fraction of bottom sediment samples (depth <span class="inline-formula">∼</span> 0.6–0.8 m) from the National Geochemical Survey of Australia were milled and fully digested before Sr separation by chromatography and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="d08d238405a8ea6b7e7b29972a1ba7ec"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00004.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00004.png"/></svg:svg></span></span> determination by multicollector-inductively coupled plasma mass spectrometry. The results show a wide range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5260b111447fe6189885d1843a512fbf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00005.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00005.png"/></svg:svg></span></span> values from a minimum of 0.7089 to a maximum of 0.7511 (range 0.0422). The median <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="2bd05feaa19a0417bc7caaaba8485c45"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00006.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00006.png"/></svg:svg></span></span> (<span class="inline-formula">±</span> median absolute deviation) is 0.7199 (<span class="inline-formula">± 0.0071</span>), and the mean (<span class="inline-formula">±</span> standard deviation) is 0.7220 (<span class="inline-formula">± 0.0106</span>). The spatial patterns of the Sr isoscape observed are described and attributed to various geological sources and processes. Of note are the elevated (radiogenic) values (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≥</mo><mo>∼</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="19pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="407a930bce85629226f77123f12d98cb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00007.svg" width="19pt" height="10pt" src="essd-14-4271-2022-ie00007.png"/></svg:svg></span></span> 0.7270; top quartile) contributed by (1) the Palaeozoic sedimentary country rock and (mostly felsic) igneous intrusions of the Lachlan geological region to the east of the study area; (2) the Palaeoproterozoic metamorphic rocks of the central Broken Hill region; both these sources contribute radiogenic material mainly by fluvial processes; and (3) the Proterozoic to Palaeozoic rocks of the Kanmantoo, Adelaide, Gawler, and Painter geological regions to the west of the area; these sources contribute radiogenic material mainly by aeolian processes. Regions of low <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><mi/><mn mathvariant="normal">87</mn></msup><mi mathvariant="normal">Sr</mi><msup><mo>/</mo><mn mathvariant="normal">86</mn></msup><mi mathvariant="normal">Sr</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e72675ce4dc97380507a29c15014c353"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00008.svg" width="49pt" height="15pt" src="essd-14-4271-2022-ie00008.png"/></svg:svg></span></span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>≤</mo><mo>∼</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="19pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fc3ae60215f1b0844788a2ac9936264e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="essd-14-4271-2022-ie00009.svg" width="19pt" height="10pt" src="essd-14-4271-2022-ie00009.png"/></svg:svg></span></span> 0.7130; bottom quartile) belong mainly to (1) a few central Murray Basin catchments; (2) some Darling Basin catchments in the northeast; and (3) a few Eromanga geological region-influenced catchments in the northwest of the study area; these sources contribute unradiogenic material mainly by fluvial processes. The new spatial Sr isotope dataset for the DCD (Darling–Curnamona–Delamerian) region is publicly available (de Caritat et al., 2022; <span class="uri">https://dx.doi.org/10.26186/146397</span>)​​​​​​​.</p>
ISSN:1866-3508
1866-3516