Summary: | (1) Background: In time, stone monuments suffer a process of aging and loss of aesthetic and mechanical properties. In order to restore and stop the loss of their properties, various treatments are used, and in this context, a new class of discovered materials with interesting properties are layered double hydroxides, or LDHs. (2) Methods: The LDHs, prepared by a coprecipitation method, were characterized by the structure by X-ray diffraction, composition by FT-IR spectroscopy and X-ray fluorescence spectroscopy, size by diffuse light scattering, and porosity by N<sub>2</sub> adsorption/desorption. Additionally, some microscopy techniques such as optical microscopy and SEM/EDAX were used for surface aspects and morphology, and finally, all these were checked with ImageJ software for representative roughness parameters of the treated surfaces by brushing or incorporation. (3) Results: The prepared materials show different degrees of crystallinity and textural properties, and the dispersion of the material presents good stability in time in water/ethanol mixtures. Treatment with the LDH dispersion applied by brushing led to improvements in the mechanical properties (about a 5% increase in compressive strength), to an increased surface stability (about 30%), and to an improvement in the resistance to freeze–thaw cycles. The textural properties of the specimens’ materials were not altered by these treatments. (4) Conclusions: The order of the consolidation efficacity was CaMgAl-LDH > MgAl-LDH > CaAl-LDH, better for application by brushing than by incorporation.
|