A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster
Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicoti...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2023-01-01
|
Series: | PLoS ONE |
Online Access: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035901/?tool=EBI |
_version_ | 1797860127742623744 |
---|---|
author | Milan Petrović Ana Meštrović Rozi Andretić Waldowski Ana Filošević Vujnović |
author_facet | Milan Petrović Ana Meštrović Rozi Andretić Waldowski Ana Filošević Vujnović |
author_sort | Milan Petrović |
collection | DOAJ |
description | Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction. |
first_indexed | 2024-04-09T21:40:49Z |
format | Article |
id | doaj.art-015fb0d3328642a2a5031e464b894176 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-09T21:40:49Z |
publishDate | 2023-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-015fb0d3328642a2a5031e464b8941762023-03-26T05:31:59ZengPublic Library of Science (PLoS)PLoS ONE1932-62032023-01-01183A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogasterMilan PetrovićAna MeštrovićRozi Andretić WaldowskiAna Filošević VujnovićAddiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035901/?tool=EBI |
spellingShingle | Milan Petrović Ana Meštrović Rozi Andretić Waldowski Ana Filošević Vujnović A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster PLoS ONE |
title | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_full | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_fullStr | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_full_unstemmed | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_short | A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster |
title_sort | network based analysis detects cocaine induced changes in social interactions in drosophila melanogaster |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035901/?tool=EBI |
work_keys_str_mv | AT milanpetrovic anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT anamestrovic anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT roziandreticwaldowski anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT anafilosevicvujnovic anetworkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT milanpetrovic networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT anamestrovic networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT roziandreticwaldowski networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster AT anafilosevicvujnovic networkbasedanalysisdetectscocaineinducedchangesinsocialinteractionsindrosophilamelanogaster |