Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule

Intensity of transitions from the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="7...

Full description

Bibliographic Details
Main Authors: Lidan Xiao, Bing Yan, Boris F. Minaev
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Physchem
Subjects:
Online Access:https://www.mdpi.com/2673-7167/3/1/9
_version_ 1797609391615115264
author Lidan Xiao
Bing Yan
Boris F. Minaev
author_facet Lidan Xiao
Bing Yan
Boris F. Minaev
author_sort Lidan Xiao
collection DOAJ
description Intensity of transitions from the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> and <i>a</i><sup>1</sup>Δ<sub>g</sub> states to the ground state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>−</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> in the near IR emission spectrum of the S<sub>2</sub> molecule has been calculated by the multireference configuration interaction method taking into account spin-orbit coupling (SOC). The intensity of the<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></semantics></math></inline-formula> − <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mo> </mo><mi mathvariant="normal">X</mi></mrow></mrow><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> transition is largely determined by the spin interaction with the electromagnetic wave, which comes from the zero-field splitting of the ground X multiplet and the SOC-induced mixing between <i>b</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mn>0</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> states. The Einstein coefficients for the experimentally detected 0−0, 0−1, 1−1 bands of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> emission system are calculated in good agreement with observations. The Einstein coefficient of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>a</mi><mn>1</mn></msup><msub><mo>∆</mo><mi mathvariant="normal">g</mi></msub><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> magnetic dipole transition is very low, being equal to 0.0014 s<sup>−1</sup>. Nonetheless, the weakest of all experimentally observed bands (the 0−0 band of the <i>a-X<sub>Ms=</sub></i><sub>±1</sub> transition) qualitatively corresponds to this calculation. Most importantly, we provide many other IR bands for magnetic dipole <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></semantics></math></inline-formula> − <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mo> </mo><mi mathvariant="normal">X</mi></mrow></mrow><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>a</mi><mn>1</mn></msup><msub><mo>∆</mo><mi mathvariant="normal">g</mi></msub><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> transitions, which could be experimentally observable in the S<sub>2</sub> transparency windows from a theoretical point of view. We hope that these results will contribute to the further experimental exploration of the magnetic infrared bands in the S<sub>2</sub> dimer.
first_indexed 2024-03-11T06:00:47Z
format Article
id doaj.art-015ff4fc60924ef186bade2f57b1f4df
institution Directory Open Access Journal
issn 2673-7167
language English
last_indexed 2024-03-11T06:00:47Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Physchem
spelling doaj.art-015ff4fc60924ef186bade2f57b1f4df2023-11-17T13:20:01ZengMDPI AGPhyschem2673-71672023-02-013111012410.3390/physchem3010009Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> MoleculeLidan Xiao0Bing Yan1Boris F. Minaev2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, ChinaInstitute of Atomic and Molecular Physics, Jilin University, Changchun 130012, ChinaDepartment of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031 Cherkasy, UkraineIntensity of transitions from the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> and <i>a</i><sup>1</sup>Δ<sub>g</sub> states to the ground state <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>−</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> in the near IR emission spectrum of the S<sub>2</sub> molecule has been calculated by the multireference configuration interaction method taking into account spin-orbit coupling (SOC). The intensity of the<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></semantics></math></inline-formula> − <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mo> </mo><mi mathvariant="normal">X</mi></mrow></mrow><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> transition is largely determined by the spin interaction with the electromagnetic wave, which comes from the zero-field splitting of the ground X multiplet and the SOC-induced mixing between <i>b</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mn>0</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> states. The Einstein coefficients for the experimentally detected 0−0, 0−1, 1−1 bands of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> emission system are calculated in good agreement with observations. The Einstein coefficient of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>a</mi><mn>1</mn></msup><msub><mo>∆</mo><mi mathvariant="normal">g</mi></msub><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> magnetic dipole transition is very low, being equal to 0.0014 s<sup>−1</sup>. Nonetheless, the weakest of all experimentally observed bands (the 0−0 band of the <i>a-X<sub>Ms=</sub></i><sub>±1</sub> transition) qualitatively corresponds to this calculation. Most importantly, we provide many other IR bands for magnetic dipole <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>b</mi><mn>1</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></semantics></math></inline-formula> − <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mo> </mo><mi mathvariant="normal">X</mi></mrow></mrow><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>a</mi><mn>1</mn></msup><msub><mo>∆</mo><mi mathvariant="normal">g</mi></msub><mo>−</mo><msup><mi mathvariant="normal">X</mi><mn>3</mn></msup><msubsup><mrow><mstyle mathsize="70%" displaystyle="true"><mo>∑</mo></mstyle></mrow><mrow><mi mathvariant="normal">g</mi><mo>,</mo><mi>M</mi><mi>s</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> transitions, which could be experimentally observable in the S<sub>2</sub> transparency windows from a theoretical point of view. We hope that these results will contribute to the further experimental exploration of the magnetic infrared bands in the S<sub>2</sub> dimer.https://www.mdpi.com/2673-7167/3/1/9magnetic dipole transitionelectro-quadrupole transitionS<sub>2</sub> moleculenear IR bandsEinstein coefficient
spellingShingle Lidan Xiao
Bing Yan
Boris F. Minaev
Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
Physchem
magnetic dipole transition
electro-quadrupole transition
S<sub>2</sub> molecule
near IR bands
Einstein coefficient
title Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
title_full Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
title_fullStr Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
title_full_unstemmed Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
title_short Near-Infrared Transitions from the Singlet Excited States to the Ground Triplet State of the S<sub>2</sub> Molecule
title_sort near infrared transitions from the singlet excited states to the ground triplet state of the s sub 2 sub molecule
topic magnetic dipole transition
electro-quadrupole transition
S<sub>2</sub> molecule
near IR bands
Einstein coefficient
url https://www.mdpi.com/2673-7167/3/1/9
work_keys_str_mv AT lidanxiao nearinfraredtransitionsfromthesingletexcitedstatestothegroundtripletstateofthessub2submolecule
AT bingyan nearinfraredtransitionsfromthesingletexcitedstatestothegroundtripletstateofthessub2submolecule
AT borisfminaev nearinfraredtransitionsfromthesingletexcitedstatestothegroundtripletstateofthessub2submolecule