Summary: | Grid-connected permanent magnet synchronous generator (PMSG) wind farms may be susceptible to oscillation when connected to weak grids. This paper explores the root causes of the oscillations from two perspectives: the model and the oscillation frequency band. First, the small signal model of PMSG wind farm grid-side system is established, and the small disturbance comparison with the PMSGA full-order electromagnetic transient model in MATLAB/Simulink is carried out. Then, we calculatue the eigenvalues of the small signal model and use model analysis techniques such as participation factors calculation and root locus method to identify the critical factors that cause the oscillation modes to be dominant. Finally, time-domain simulation is used to verify the theoretical analysis. Two dominant modes are identified: the subsynchronous oscillation mode and the low-frequency oscillation mode. The subsynchronous oscillation mode is closely related to the direct current (DC) voltage control and the dynamics of DC link. The low-frequency oscillation is significantly weakened with the decrease in grid strength, and it is closely related to the phase-locked loop (PLL) control. The conclusions can provide a reference for tuning the control parameters of PMSG converter.
|