Quantum and Classical Cosmology in the Brans–Dicke Theory

In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical...

Full description

Bibliographic Details
Main Authors: Carla R. Almeida, Olesya Galkina, Julio César Fabris
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/7/8/286
_version_ 1797521906029559808
author Carla R. Almeida
Olesya Galkina
Julio César Fabris
author_facet Carla R. Almeida
Olesya Galkina
Julio César Fabris
author_sort Carla R. Almeida
collection DOAJ
description In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo><</mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, the energy is bounded from below and singularity-free solutions are found. However, in the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>></mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>.
first_indexed 2024-03-10T08:19:09Z
format Article
id doaj.art-0169b066aa4c48f4867f5c46b134954d
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T08:19:09Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-0169b066aa4c48f4867f5c46b134954d2023-11-22T10:05:43ZengMDPI AGUniverse2218-19972021-08-017828610.3390/universe7080286Quantum and Classical Cosmology in the Brans–Dicke TheoryCarla R. Almeida0Olesya Galkina1Julio César Fabris2Núcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilNúcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilNúcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilIn this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo><</mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, the energy is bounded from below and singularity-free solutions are found. However, in the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>></mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>.https://www.mdpi.com/2218-1997/7/8/286Brans–Dicke theorybounce modelsde Broglie–Bohm interpretation
spellingShingle Carla R. Almeida
Olesya Galkina
Julio César Fabris
Quantum and Classical Cosmology in the Brans–Dicke Theory
Universe
Brans–Dicke theory
bounce models
de Broglie–Bohm interpretation
title Quantum and Classical Cosmology in the Brans–Dicke Theory
title_full Quantum and Classical Cosmology in the Brans–Dicke Theory
title_fullStr Quantum and Classical Cosmology in the Brans–Dicke Theory
title_full_unstemmed Quantum and Classical Cosmology in the Brans–Dicke Theory
title_short Quantum and Classical Cosmology in the Brans–Dicke Theory
title_sort quantum and classical cosmology in the brans dicke theory
topic Brans–Dicke theory
bounce models
de Broglie–Bohm interpretation
url https://www.mdpi.com/2218-1997/7/8/286
work_keys_str_mv AT carlaralmeida quantumandclassicalcosmologyinthebransdicketheory
AT olesyagalkina quantumandclassicalcosmologyinthebransdicketheory
AT juliocesarfabris quantumandclassicalcosmologyinthebransdicketheory