Quantum and Classical Cosmology in the Brans–Dicke Theory
In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Universe |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1997/7/8/286 |
_version_ | 1797521906029559808 |
---|---|
author | Carla R. Almeida Olesya Galkina Julio César Fabris |
author_facet | Carla R. Almeida Olesya Galkina Julio César Fabris |
author_sort | Carla R. Almeida |
collection | DOAJ |
description | In this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo><</mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, the energy is bounded from below and singularity-free solutions are found. However, in the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>></mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>. |
first_indexed | 2024-03-10T08:19:09Z |
format | Article |
id | doaj.art-0169b066aa4c48f4867f5c46b134954d |
institution | Directory Open Access Journal |
issn | 2218-1997 |
language | English |
last_indexed | 2024-03-10T08:19:09Z |
publishDate | 2021-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Universe |
spelling | doaj.art-0169b066aa4c48f4867f5c46b134954d2023-11-22T10:05:43ZengMDPI AGUniverse2218-19972021-08-017828610.3390/universe7080286Quantum and Classical Cosmology in the Brans–Dicke TheoryCarla R. Almeida0Olesya Galkina1Julio César Fabris2Núcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilNúcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilNúcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES, BrazilIn this paper, we discuss classical and quantum aspects of cosmological models in the Brans–Dicke theory. First, we review cosmological bounce solutions in the Brans–Dicke theory that obeys energy conditions (without ghost) for a universe filled with radiative fluid. Then, we quantize this classical model in a canonical way, establishing the corresponding Wheeler–DeWitt equation in the minisuperspace, and analyze the quantum solutions. When the energy conditions are violated, corresponding to the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo><</mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, the energy is bounded from below and singularity-free solutions are found. However, in the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>></mo><mo>−</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, we cannot compute the evolution of the scale factor by evaluating the expectation values because the wave function is not finite (energy spectrum is not bounded from below). However, we can analyze this case using Bohmian mechanics and the de Broglie–Bohm interpretation of quantum mechanics. Using this approach, the classical and quantum results can be compared for any value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>.https://www.mdpi.com/2218-1997/7/8/286Brans–Dicke theorybounce modelsde Broglie–Bohm interpretation |
spellingShingle | Carla R. Almeida Olesya Galkina Julio César Fabris Quantum and Classical Cosmology in the Brans–Dicke Theory Universe Brans–Dicke theory bounce models de Broglie–Bohm interpretation |
title | Quantum and Classical Cosmology in the Brans–Dicke Theory |
title_full | Quantum and Classical Cosmology in the Brans–Dicke Theory |
title_fullStr | Quantum and Classical Cosmology in the Brans–Dicke Theory |
title_full_unstemmed | Quantum and Classical Cosmology in the Brans–Dicke Theory |
title_short | Quantum and Classical Cosmology in the Brans–Dicke Theory |
title_sort | quantum and classical cosmology in the brans dicke theory |
topic | Brans–Dicke theory bounce models de Broglie–Bohm interpretation |
url | https://www.mdpi.com/2218-1997/7/8/286 |
work_keys_str_mv | AT carlaralmeida quantumandclassicalcosmologyinthebransdicketheory AT olesyagalkina quantumandclassicalcosmologyinthebransdicketheory AT juliocesarfabris quantumandclassicalcosmologyinthebransdicketheory |