Delta and Theta Operator Expansions

We give an elementary symmetric function expansion for the expressions $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ and $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ when $t=1$ in terms of what we call $\gamma $ -parking functions and lattice $\gamma $ -parking...

ver descrição completa

Detalhes bibliográficos
Principais autores: Alessandro Iraci, Marino Romero
Formato: Artigo
Idioma:English
Publicado em: Cambridge University Press 2024-01-01
coleção:Forum of Mathematics, Sigma
Assuntos:
Acesso em linha:https://www.cambridge.org/core/product/identifier/S2050509424000148/type/journal_article
_version_ 1827324568601100288
author Alessandro Iraci
Marino Romero
author_facet Alessandro Iraci
Marino Romero
author_sort Alessandro Iraci
collection DOAJ
description We give an elementary symmetric function expansion for the expressions $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ and $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ when $t=1$ in terms of what we call $\gamma $ -parking functions and lattice $\gamma $ -parking functions. Here, $\Delta _F$ and $\Pi $ are certain eigenoperators of the modified Macdonald basis and $M=(1-q)(1-t)$ . Our main results, in turn, give an elementary basis expansion at $t=1$ for symmetric functions of the form $M \Delta _{Fe_1} \Theta _{G} J$ whenever F is expanded in terms of monomials, G is expanded in terms of the elementary basis, and J is expanded in terms of the modified elementary basis $\{\Pi e_\lambda ^\ast \}_\lambda $ . Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an e-positivity conjecture for when t is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.
first_indexed 2024-03-07T13:57:45Z
format Article
id doaj.art-016beb51a3f14c3885b2e41d352a181a
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-03-07T13:57:45Z
publishDate 2024-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-016beb51a3f14c3885b2e41d352a181a2024-03-07T07:18:30ZengCambridge University PressForum of Mathematics, Sigma2050-50942024-01-011210.1017/fms.2024.14Delta and Theta Operator ExpansionsAlessandro Iraci0https://orcid.org/0000-0002-3158-3929Marino Romero1https://orcid.org/0000-0002-7255-3179Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 56127 Pisa, Italy; E-mail:Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria; E-mail:We give an elementary symmetric function expansion for the expressions $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ and $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ when $t=1$ in terms of what we call $\gamma $ -parking functions and lattice $\gamma $ -parking functions. Here, $\Delta _F$ and $\Pi $ are certain eigenoperators of the modified Macdonald basis and $M=(1-q)(1-t)$ . Our main results, in turn, give an elementary basis expansion at $t=1$ for symmetric functions of the form $M \Delta _{Fe_1} \Theta _{G} J$ whenever F is expanded in terms of monomials, G is expanded in terms of the elementary basis, and J is expanded in terms of the modified elementary basis $\{\Pi e_\lambda ^\ast \}_\lambda $ . Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an e-positivity conjecture for when t is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.https://www.cambridge.org/core/product/identifier/S2050509424000148/type/journal_article05E0505E10
spellingShingle Alessandro Iraci
Marino Romero
Delta and Theta Operator Expansions
Forum of Mathematics, Sigma
05E05
05E10
title Delta and Theta Operator Expansions
title_full Delta and Theta Operator Expansions
title_fullStr Delta and Theta Operator Expansions
title_full_unstemmed Delta and Theta Operator Expansions
title_short Delta and Theta Operator Expansions
title_sort delta and theta operator expansions
topic 05E05
05E10
url https://www.cambridge.org/core/product/identifier/S2050509424000148/type/journal_article
work_keys_str_mv AT alessandroiraci deltaandthetaoperatorexpansions
AT marinoromero deltaandthetaoperatorexpansions