Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease

Background: Ventricular tachycardia (VT) recurrence after catheter ablation remains a concern, emphasizing the need for precise risk assessment. We aimed to use machine learning (ML) to predict 1-month and 1-year VT recurrence following VT ablation. Methods: For 337 patients undergoing VT ablation,...

Full description

Bibliographic Details
Main Authors: Ferenc Komlósi, Patrik Tóth, Gyula Bohus, Péter Vámosi, Márton Tokodi, Nándor Szegedi, Zoltán Salló, Katalin Piros, Péter Perge, István Osztheimer, Pál Ábrahám, Gábor Széplaki, Béla Merkely, László Gellér, Klaudia Vivien Nagy
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/10/12/1386
_version_ 1797381940429455360
author Ferenc Komlósi
Patrik Tóth
Gyula Bohus
Péter Vámosi
Márton Tokodi
Nándor Szegedi
Zoltán Salló
Katalin Piros
Péter Perge
István Osztheimer
Pál Ábrahám
Gábor Széplaki
Béla Merkely
László Gellér
Klaudia Vivien Nagy
author_facet Ferenc Komlósi
Patrik Tóth
Gyula Bohus
Péter Vámosi
Márton Tokodi
Nándor Szegedi
Zoltán Salló
Katalin Piros
Péter Perge
István Osztheimer
Pál Ábrahám
Gábor Széplaki
Béla Merkely
László Gellér
Klaudia Vivien Nagy
author_sort Ferenc Komlósi
collection DOAJ
description Background: Ventricular tachycardia (VT) recurrence after catheter ablation remains a concern, emphasizing the need for precise risk assessment. We aimed to use machine learning (ML) to predict 1-month and 1-year VT recurrence following VT ablation. Methods: For 337 patients undergoing VT ablation, we collected 31 parameters including medical history, echocardiography, and procedural data. 17 relevant features were included in the ML-based feature selection, which yielded six and five optimal features for 1-month and 1-year recurrence, respectively. We trained several supervised machine learning models using 10-fold cross-validation for each endpoint. Results: We observed 1-month VT recurrence was observed in 60 (18%) cases and accurately predicted using our model with an area under the receiver operating curve (AUC) of 0.73. Input features used were hemodynamic instability, incessant VT, ICD shock, left ventricular ejection fraction, TAPSE, and non-inducibility of the clinical VT at the end of the procedure. A separate model was trained for 1-year VT recurrence (observed in 117 (35%) cases) with a mean AUC of 0.71. Selected features were hemodynamic instability, the number of inducible VT morphologies, left ventricular systolic diameter, mitral regurgitation, and ICD shock. For both endpoints, a random forest model displayed the highest performance. Conclusions: Our ML models effectively predict VT recurrence post-ablation, aiding in identifying high-risk patients and tailoring follow-up strategies.
first_indexed 2024-03-08T20:59:16Z
format Article
id doaj.art-01846a6631e9440d99c60211b0a6ff7a
institution Directory Open Access Journal
issn 2306-5354
language English
last_indexed 2024-03-08T20:59:16Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Bioengineering
spelling doaj.art-01846a6631e9440d99c60211b0a6ff7a2023-12-22T13:54:06ZengMDPI AGBioengineering2306-53542023-12-011012138610.3390/bioengineering10121386Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart DiseaseFerenc Komlósi0Patrik Tóth1Gyula Bohus2Péter Vámosi3Márton Tokodi4Nándor Szegedi5Zoltán Salló6Katalin Piros7Péter Perge8István Osztheimer9Pál Ábrahám10Gábor Széplaki11Béla Merkely12László Gellér13Klaudia Vivien Nagy14Heart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryMater Private Hospital, 69 Eccles St., D07 WKW8 Dublin, IrelandHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryHeart and Vascular Center, Semmelweis University, Városmajor u. 68, 1122 Budapest, HungaryBackground: Ventricular tachycardia (VT) recurrence after catheter ablation remains a concern, emphasizing the need for precise risk assessment. We aimed to use machine learning (ML) to predict 1-month and 1-year VT recurrence following VT ablation. Methods: For 337 patients undergoing VT ablation, we collected 31 parameters including medical history, echocardiography, and procedural data. 17 relevant features were included in the ML-based feature selection, which yielded six and five optimal features for 1-month and 1-year recurrence, respectively. We trained several supervised machine learning models using 10-fold cross-validation for each endpoint. Results: We observed 1-month VT recurrence was observed in 60 (18%) cases and accurately predicted using our model with an area under the receiver operating curve (AUC) of 0.73. Input features used were hemodynamic instability, incessant VT, ICD shock, left ventricular ejection fraction, TAPSE, and non-inducibility of the clinical VT at the end of the procedure. A separate model was trained for 1-year VT recurrence (observed in 117 (35%) cases) with a mean AUC of 0.71. Selected features were hemodynamic instability, the number of inducible VT morphologies, left ventricular systolic diameter, mitral regurgitation, and ICD shock. For both endpoints, a random forest model displayed the highest performance. Conclusions: Our ML models effectively predict VT recurrence post-ablation, aiding in identifying high-risk patients and tailoring follow-up strategies.https://www.mdpi.com/2306-5354/10/12/1386ventricular tachycardiacatheter ablationrecurrencemachine learningrandom forest
spellingShingle Ferenc Komlósi
Patrik Tóth
Gyula Bohus
Péter Vámosi
Márton Tokodi
Nándor Szegedi
Zoltán Salló
Katalin Piros
Péter Perge
István Osztheimer
Pál Ábrahám
Gábor Széplaki
Béla Merkely
László Gellér
Klaudia Vivien Nagy
Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
Bioengineering
ventricular tachycardia
catheter ablation
recurrence
machine learning
random forest
title Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
title_full Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
title_fullStr Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
title_full_unstemmed Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
title_short Machine-Learning-Based Prediction of 1-Year Arrhythmia Recurrence after Ventricular Tachycardia Ablation in Patients with Structural Heart Disease
title_sort machine learning based prediction of 1 year arrhythmia recurrence after ventricular tachycardia ablation in patients with structural heart disease
topic ventricular tachycardia
catheter ablation
recurrence
machine learning
random forest
url https://www.mdpi.com/2306-5354/10/12/1386
work_keys_str_mv AT ferenckomlosi machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT patriktoth machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT gyulabohus machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT petervamosi machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT martontokodi machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT nandorszegedi machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT zoltansallo machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT katalinpiros machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT peterperge machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT istvanosztheimer machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT palabraham machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT gaborszeplaki machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT belamerkely machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT laszlogeller machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease
AT klaudiaviviennagy machinelearningbasedpredictionof1yeararrhythmiarecurrenceafterventriculartachycardiaablationinpatientswithstructuralheartdisease