Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L.
Halophytic plants can tolerate a high level of salinity through several morphological and physiological adaptations along with the presence of salt tolerant rhizo-microbiome. These microbes release phytohormones which aid in alleviating salinity stress and improve nutrient availability. The isolatio...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-02-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1085787/full |
_version_ | 1811164155608039424 |
---|---|
author | Joseph Ezra John Muthunalliappan Maheswari Thangavel Kalaiselvi Mohan Prasanthrajan Chidamparam Poornachandhra Srirangarayan Subramanian Rakesh Boopathi Gopalakrishnan Veeraswamy Davamani Eswaran Kokiladevi Sellappan Ranjith |
author_facet | Joseph Ezra John Muthunalliappan Maheswari Thangavel Kalaiselvi Mohan Prasanthrajan Chidamparam Poornachandhra Srirangarayan Subramanian Rakesh Boopathi Gopalakrishnan Veeraswamy Davamani Eswaran Kokiladevi Sellappan Ranjith |
author_sort | Joseph Ezra John |
collection | DOAJ |
description | Halophytic plants can tolerate a high level of salinity through several morphological and physiological adaptations along with the presence of salt tolerant rhizo-microbiome. These microbes release phytohormones which aid in alleviating salinity stress and improve nutrient availability. The isolation and identification of such halophilic PGPRs can be useful in developing bio-inoculants for improving the salt tolerance and productivity of non-halophytic plants under saline conditions. In this study, salt-tolerant bacteria with multiple plant growth promoting characteristics were isolated from the rhizosphere of a predominant halophyte, Sesuvium portulacastrum grown in the coastal and paper mill effluent irrigated soils. Among the isolates, nine halotolerant rhizobacterial strains that were able to grow profusely at a salinity level of 5% NaCl were screened. These isolates were found to have multiple plant growth promoting (PGP) traits, especially 1-aminocyclopropane-1-carboxylic acid deaminase activity (0.32–1.18 μM of α-ketobutyrate released mg−1 of protein h−1) and indole acetic acid (9.4–22.8 μg mL−1). The halotolerant PGPR inoculation had the potential to improve salt tolerance in Vigna mungo L. which was reflected in significantly (p < 0.05) higher germination percentage (89%) compared to un-inoculated seeds (65%) under 2% NaCl. Similarly, shoot length (8.9–14.6 cm) and vigor index (792–1785) were also higher in inoculated seeds. The strains compatible with each other were used for the preparation of two bioformulations and these microbial consortia were tested for their efficacy in salt stress alleviation of Vigna mungo L. under pot study. The inoculation improved the photosynthetic rate (12%), chlorophyll content (22%), shoot length (5.7%) and grain yield (33%) in Vigna mungo L. The enzymatic activity of catalase and superoxide dismutase were found to be lower (7.0 and 1.5%, respectively) in inoculated plants. These results revealed that halotolerant PGPR isolated from S. portulacastrum can be a cost-effective and ecologically sustainable method to improve crop productivity under high saline conditions. |
first_indexed | 2024-04-10T15:16:47Z |
format | Article |
id | doaj.art-01a40d869a1943889b191ad173c7fde8 |
institution | Directory Open Access Journal |
issn | 1664-302X |
language | English |
last_indexed | 2024-04-10T15:16:47Z |
publishDate | 2023-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Microbiology |
spelling | doaj.art-01a40d869a1943889b191ad173c7fde82023-02-14T18:11:43ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2023-02-011410.3389/fmicb.2023.10857871085787Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L.Joseph Ezra John0Muthunalliappan Maheswari1Thangavel Kalaiselvi2Mohan Prasanthrajan3Chidamparam Poornachandhra4Srirangarayan Subramanian Rakesh5Boopathi Gopalakrishnan6Veeraswamy Davamani7Eswaran Kokiladevi8Sellappan Ranjith9Department of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaICAR-National Institute of Abiotic Stress Management, Baramati, IndiaDepartment of Environmental Sciences, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, IndiaDepartment of Agricultural Microbiology, AC&RI, Tamil Nadu Agricultural University, Coimbatore, IndiaHalophytic plants can tolerate a high level of salinity through several morphological and physiological adaptations along with the presence of salt tolerant rhizo-microbiome. These microbes release phytohormones which aid in alleviating salinity stress and improve nutrient availability. The isolation and identification of such halophilic PGPRs can be useful in developing bio-inoculants for improving the salt tolerance and productivity of non-halophytic plants under saline conditions. In this study, salt-tolerant bacteria with multiple plant growth promoting characteristics were isolated from the rhizosphere of a predominant halophyte, Sesuvium portulacastrum grown in the coastal and paper mill effluent irrigated soils. Among the isolates, nine halotolerant rhizobacterial strains that were able to grow profusely at a salinity level of 5% NaCl were screened. These isolates were found to have multiple plant growth promoting (PGP) traits, especially 1-aminocyclopropane-1-carboxylic acid deaminase activity (0.32–1.18 μM of α-ketobutyrate released mg−1 of protein h−1) and indole acetic acid (9.4–22.8 μg mL−1). The halotolerant PGPR inoculation had the potential to improve salt tolerance in Vigna mungo L. which was reflected in significantly (p < 0.05) higher germination percentage (89%) compared to un-inoculated seeds (65%) under 2% NaCl. Similarly, shoot length (8.9–14.6 cm) and vigor index (792–1785) were also higher in inoculated seeds. The strains compatible with each other were used for the preparation of two bioformulations and these microbial consortia were tested for their efficacy in salt stress alleviation of Vigna mungo L. under pot study. The inoculation improved the photosynthetic rate (12%), chlorophyll content (22%), shoot length (5.7%) and grain yield (33%) in Vigna mungo L. The enzymatic activity of catalase and superoxide dismutase were found to be lower (7.0 and 1.5%, respectively) in inoculated plants. These results revealed that halotolerant PGPR isolated from S. portulacastrum can be a cost-effective and ecologically sustainable method to improve crop productivity under high saline conditions.https://www.frontiersin.org/articles/10.3389/fmicb.2023.1085787/fullHalophyterhizobacteriaendophytessalt tolerancecrop improvementACC deaminase |
spellingShingle | Joseph Ezra John Muthunalliappan Maheswari Thangavel Kalaiselvi Mohan Prasanthrajan Chidamparam Poornachandhra Srirangarayan Subramanian Rakesh Boopathi Gopalakrishnan Veeraswamy Davamani Eswaran Kokiladevi Sellappan Ranjith Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. Frontiers in Microbiology Halophyte rhizobacteria endophytes salt tolerance crop improvement ACC deaminase |
title | Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. |
title_full | Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. |
title_fullStr | Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. |
title_full_unstemmed | Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. |
title_short | Biomining Sesuvium portulacastrum for halotolerant PGPR and endophytes for promotion of salt tolerance in Vigna mungo L. |
title_sort | biomining sesuvium portulacastrum for halotolerant pgpr and endophytes for promotion of salt tolerance in vigna mungo l |
topic | Halophyte rhizobacteria endophytes salt tolerance crop improvement ACC deaminase |
url | https://www.frontiersin.org/articles/10.3389/fmicb.2023.1085787/full |
work_keys_str_mv | AT josephezrajohn biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT muthunalliappanmaheswari biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT thangavelkalaiselvi biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT mohanprasanthrajan biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT chidamparampoornachandhra biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT srirangarayansubramanianrakesh biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT boopathigopalakrishnan biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT veeraswamydavamani biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT eswarankokiladevi biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol AT sellappanranjith biominingsesuviumportulacastrumforhalotolerantpgprandendophytesforpromotionofsalttoleranceinvignamungol |