Sushi domain-containing protein 4 controls synaptic plasticity and motor learning

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-rela...

Full description

Bibliographic Details
Main Authors: Inés González-Calvo, Keerthana Iyer, Mélanie Carquin, Anouar Khayachi, Fernando A Giuliani, Séverine M Sigoillot, Jean Vincent, Martial Séveno, Maxime Veleanu, Sylvana Tahraoui, Mélanie Albert, Oana Vigy, Célia Bosso-Lefèvre, Yann Nadjar, Andréa Dumoulin, Antoine Triller, Jean-Louis Bessereau, Laure Rondi-Reig, Philippe Isope, Fekrije Selimi
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2021-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/65712
_version_ 1818019913981231104
author Inés González-Calvo
Keerthana Iyer
Mélanie Carquin
Anouar Khayachi
Fernando A Giuliani
Séverine M Sigoillot
Jean Vincent
Martial Séveno
Maxime Veleanu
Sylvana Tahraoui
Mélanie Albert
Oana Vigy
Célia Bosso-Lefèvre
Yann Nadjar
Andréa Dumoulin
Antoine Triller
Jean-Louis Bessereau
Laure Rondi-Reig
Philippe Isope
Fekrije Selimi
author_facet Inés González-Calvo
Keerthana Iyer
Mélanie Carquin
Anouar Khayachi
Fernando A Giuliani
Séverine M Sigoillot
Jean Vincent
Martial Séveno
Maxime Veleanu
Sylvana Tahraoui
Mélanie Albert
Oana Vigy
Célia Bosso-Lefèvre
Yann Nadjar
Andréa Dumoulin
Antoine Triller
Jean-Louis Bessereau
Laure Rondi-Reig
Philippe Isope
Fekrije Selimi
author_sort Inés González-Calvo
collection DOAJ
description Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
first_indexed 2024-04-14T07:58:09Z
format Article
id doaj.art-01bd3175794d47878ad8b245d0150a1d
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-14T07:58:09Z
publishDate 2021-03-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-01bd3175794d47878ad8b245d0150a1d2022-12-22T02:04:58ZengeLife Sciences Publications LtdeLife2050-084X2021-03-011010.7554/eLife.65712Sushi domain-containing protein 4 controls synaptic plasticity and motor learningInés González-Calvo0https://orcid.org/0000-0002-2652-2160Keerthana Iyer1https://orcid.org/0000-0002-4384-6781Mélanie Carquin2Anouar Khayachi3Fernando A Giuliani4Séverine M Sigoillot5Jean Vincent6Martial Séveno7Maxime Veleanu8Sylvana Tahraoui9Mélanie Albert10Oana Vigy11Célia Bosso-Lefèvre12Yann Nadjar13Andréa Dumoulin14Antoine Triller15Jean-Louis Bessereau16https://orcid.org/0000-0002-3088-7621Laure Rondi-Reig17https://orcid.org/0000-0003-1006-0501Philippe Isope18https://orcid.org/0000-0002-0630-5935Fekrije Selimi19https://orcid.org/0000-0001-7704-5897Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France; Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceInstitut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceInstitut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, FranceBioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceInstitut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceÉcole Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, FranceÉcole Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, FranceÉcole Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, FranceUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, FranceInstitut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, FranceInstitut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, FranceCenter for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, FranceFine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.https://elifesciences.org/articles/65712synapseplasticitycerebellumproteostasis
spellingShingle Inés González-Calvo
Keerthana Iyer
Mélanie Carquin
Anouar Khayachi
Fernando A Giuliani
Séverine M Sigoillot
Jean Vincent
Martial Séveno
Maxime Veleanu
Sylvana Tahraoui
Mélanie Albert
Oana Vigy
Célia Bosso-Lefèvre
Yann Nadjar
Andréa Dumoulin
Antoine Triller
Jean-Louis Bessereau
Laure Rondi-Reig
Philippe Isope
Fekrije Selimi
Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
eLife
synapse
plasticity
cerebellum
proteostasis
title Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
title_full Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
title_fullStr Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
title_full_unstemmed Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
title_short Sushi domain-containing protein 4 controls synaptic plasticity and motor learning
title_sort sushi domain containing protein 4 controls synaptic plasticity and motor learning
topic synapse
plasticity
cerebellum
proteostasis
url https://elifesciences.org/articles/65712
work_keys_str_mv AT inesgonzalezcalvo sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT keerthanaiyer sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT melaniecarquin sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT anouarkhayachi sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT fernandoagiuliani sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT severinemsigoillot sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT jeanvincent sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT martialseveno sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT maximeveleanu sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT sylvanatahraoui sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT melaniealbert sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT oanavigy sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT celiabossolefevre sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT yannnadjar sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT andreadumoulin sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT antoinetriller sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT jeanlouisbessereau sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT laurerondireig sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT philippeisope sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning
AT fekrijeselimi sushidomaincontainingprotein4controlssynapticplasticityandmotorlearning