Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2

Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanopa...

Full description

Bibliographic Details
Main Authors: M E Fernandez, G Murillo, R A Vargas, D Peña Lara, J E Diosa
Format: Article
Language:English
Published: Universidad EAFIT 2017-04-01
Series:Ingeniería y Ciencia
Subjects:
Online Access:http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3904
Description
Summary:Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanoparticles (TiO$_2$) concentrations. The polymer systems (1-x)(H3 PO2/ PVA) + xTiO2 were prepared using the sol-casting method and different weight percent of TiO2, x≤ 10.0%. The DSC results show that the glass transition for molar fraction P/OH = 0.3 appears around 75°C and for the samples doped with TiO2 around 35°C the melting point for all membranes appear around 175°C. The FTIR spectra show changes in the profiles of the absorption bands with the addition of H3 PO2 and the different concentrations of TiO2. The IS results show dielectric and conductivity relaxations as well as a change in DC ionic conductivity with the TiO$_2$ content. The order of the ionic conductivity is about 10-2 S/cm for 5.0% of TiO2. The TGA in the heating run shows water loss that is in agreement with de DC conductivity measurements.
ISSN:1794-9165
2256-4314