Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
主要な著者: | Jiaxu Huang, Haiqing Hu |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
SpringerOpen
2024-01-01
|
シリーズ: | Journal of Big Data |
主題: | |
オンライン・アクセス: | https://doi.org/10.1186/s40537-023-00864-8 |
類似資料
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
著者:: Guoping You, 等
出版事項: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
著者:: Hongmin Chen, 等
出版事項: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
著者:: Aurél Galántai
出版事項: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
著者:: Jifang Li, 等
出版事項: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
著者:: Aurél Galántai
出版事項: (2023-04-01)