Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Главные авторы: | Jiaxu Huang, Haiqing Hu |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
SpringerOpen
2024-01-01
|
Серии: | Journal of Big Data |
Предметы: | |
Online-ссылка: | https://doi.org/10.1186/s40537-023-00864-8 |
Схожие документы
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
по: Guoping You, и др.
Опубликовано: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
по: Hongmin Chen, и др.
Опубликовано: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
по: Aurél Galántai
Опубликовано: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
по: Jifang Li, и др.
Опубликовано: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
по: Aurél Galántai
Опубликовано: (2023-04-01)