Hybrid beluga whale optimization algorithm with multi-strategy for functions and engineering optimization problems
Abstract Beluga Whale Optimization (BWO) is a new metaheuristic algorithm that simulates the social behaviors of beluga whales swimming, foraging, and whale falling. Compared with other optimization algorithms, BWO shows certain advantages in solving unimodal and multimodal optimization problems. Ho...
Автори: | Jiaxu Huang, Haiqing Hu |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
SpringerOpen
2024-01-01
|
Серія: | Journal of Big Data |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1186/s40537-023-00864-8 |
Схожі ресурси
Схожі ресурси
-
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems
за авторством: Guoping You, та інші
Опубліковано: (2024-11-01) -
An improved multi-strategy beluga whale optimization for global optimization problems
за авторством: Hongmin Chen, та інші
Опубліковано: (2023-06-01) -
The Nelder–Mead Simplex Algorithm Is Sixty Years Old: New Convergence Results and Open Questions
за авторством: Aurél Galántai
Опубліковано: (2024-11-01) -
Optimal Configuration of Distributed Generation Based on an Improved Beluga Whale Optimization
за авторством: Jifang Li, та інші
Опубліковано: (2024-01-01) -
A Stochastic Convergence Result for the Nelder–Mead Simplex Method
за авторством: Aurél Galántai
Опубліковано: (2023-04-01)