Multiple concentrating solutions for a fractional (p, q)-Choquard equation

We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert...

Full description

Bibliographic Details
Main Author: Ambrosio Vincenzo
Format: Article
Language:English
Published: De Gruyter 2024-04-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0125
_version_ 1797197569798963200
author Ambrosio Vincenzo
author_facet Ambrosio Vincenzo
author_sort Ambrosio Vincenzo
collection DOAJ
description We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert u{\vert }^{q-2}u\right)=\left(\frac{1}{\vert x{\vert }^{\mu }}{\ast}F\left(u\right)\right)f\left(u\right) \,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \\ u\in {W}^{s,p}\left({\mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >}0\,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \end{cases}$ where ɛ > 0 is a small parameter, 0 < s < 1, 1<p<q<Ns $1{< }p{< }q{< }\frac{N}{s}$ , 0 < μ < sp, (−Δ)rs ${\left(-{\Delta}\right)}_{r}^{s}$ , with r ∈ {p, q}, is the fractional r-Laplacian operator, V:RN→R $V:{\mathbb{R}}^{N}\to \mathbb{R}$ is a positive continuous potential satisfying a local condition, f:R→R $f:\mathbb{R}\to \mathbb{R}$ is a continuous nonlinearity with subcritical growth at infinity and F(t)=∫0tf(τ)dτ $F\left(t\right)={\int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ . Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
first_indexed 2024-04-24T06:46:03Z
format Article
id doaj.art-01d6d19a9628412fbffa540f7bc6f7e5
institution Directory Open Access Journal
issn 2169-0375
language English
last_indexed 2024-04-24T06:46:03Z
publishDate 2024-04-01
publisher De Gruyter
record_format Article
series Advanced Nonlinear Studies
spelling doaj.art-01d6d19a9628412fbffa540f7bc6f7e52024-04-22T19:39:26ZengDe GruyterAdvanced Nonlinear Studies2169-03752024-04-0124251054110.1515/ans-2023-0125Multiple concentrating solutions for a fractional (p, q)-Choquard equationAmbrosio Vincenzo0Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica Delle Marche, via Brecce Bianche, 12 60131Ancona, ItalyWe focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert u{\vert }^{q-2}u\right)=\left(\frac{1}{\vert x{\vert }^{\mu }}{\ast}F\left(u\right)\right)f\left(u\right) \,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \\ u\in {W}^{s,p}\left({\mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >}0\,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \end{cases}$ where ɛ > 0 is a small parameter, 0 < s < 1, 1<p<q<Ns $1{< }p{< }q{< }\frac{N}{s}$ , 0 < μ < sp, (−Δ)rs ${\left(-{\Delta}\right)}_{r}^{s}$ , with r ∈ {p, q}, is the fractional r-Laplacian operator, V:RN→R $V:{\mathbb{R}}^{N}\to \mathbb{R}$ is a positive continuous potential satisfying a local condition, f:R→R $f:\mathbb{R}\to \mathbb{R}$ is a continuous nonlinearity with subcritical growth at infinity and F(t)=∫0tf(τ)dτ $F\left(t\right)={\int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ . Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.https://doi.org/10.1515/ans-2023-0125fractional (p, q)-laplacian operatorpenalization techniqueljusternik–schnirelmann theory35a1535b3835j6035r1145k0558e05
spellingShingle Ambrosio Vincenzo
Multiple concentrating solutions for a fractional (p, q)-Choquard equation
Advanced Nonlinear Studies
fractional (p, q)-laplacian operator
penalization technique
ljusternik–schnirelmann theory
35a15
35b38
35j60
35r11
45k05
58e05
title Multiple concentrating solutions for a fractional (p, q)-Choquard equation
title_full Multiple concentrating solutions for a fractional (p, q)-Choquard equation
title_fullStr Multiple concentrating solutions for a fractional (p, q)-Choquard equation
title_full_unstemmed Multiple concentrating solutions for a fractional (p, q)-Choquard equation
title_short Multiple concentrating solutions for a fractional (p, q)-Choquard equation
title_sort multiple concentrating solutions for a fractional p q choquard equation
topic fractional (p, q)-laplacian operator
penalization technique
ljusternik–schnirelmann theory
35a15
35b38
35j60
35r11
45k05
58e05
url https://doi.org/10.1515/ans-2023-0125
work_keys_str_mv AT ambrosiovincenzo multipleconcentratingsolutionsforafractionalpqchoquardequation