Optimization of the extraction process of high levels of chlorogenic acid and ginsenosides from short-term hydroponic-cultured ginseng and evaluation of the extract for the prevention of atopic dermatitis

Background: Short-term hydroponic-cultured ginseng (sHCG), which is 1-year-old ginseng seedlings cultivated for 4 weeks in a hydroponic system, is a functional food item with several biological effects. However, the optimal extraction conditions for sHCG, and the bioactivity of its extracts, have no...

Full description

Bibliographic Details
Main Authors: Tae Kyung Lee, Ji Yun Lee, Yeon-Jin Cho, Jong-Eun Kim, Seo Yeong Kim, Jung Han Yoon Park, Hee Yang, Ki Won Lee
Format: Article
Language:English
Published: Elsevier 2022-05-01
Series:Journal of Ginseng Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1226845321001597
Description
Summary:Background: Short-term hydroponic-cultured ginseng (sHCG), which is 1-year-old ginseng seedlings cultivated for 4 weeks in a hydroponic system, is a functional food item with several biological effects. However, the optimal extraction conditions for sHCG, and the bioactivity of its extracts, have not been evaluated. Methods: Chlorogenic acid (CGA) and ginsenoside contents were evaluated in sHCG, white ginseng (WG), and red ginseng (RG) using high-performance liquid chromatography. Response surface methodology (RSM) was used to optimize the extraction conditions (temperature and ethanol concentration) to maximize the yield of dry matter, CGA, and four ginsenosides (Re, Rg1, Rb1, and Rd) from sHCG. The optimal extraction conditions were applied to pilot-scale production of sHCG extracts. The expression levels of tumor necrosis factor (TNF)-α/interferon (IFN)-γ-induced thymic and activation-regulated chemokines (TARC/CCL17) were measured after treatment with sHCG, WG, and RG extracts, and the effects of their bioactive compounds (CGA and four ginsenosides) on human skin keratinocytes (HaCaTs) were evaluated. Results: CGA and four ginsenosides, which are bioactive compounds of sHCG, significantly inhibited TNF-α/IFN-γ-induced TARC/CCL17 expression. The optimal sHCG extraction conditions predicted by the RSM models were 80 °C and 60% ethanol (v/v). The sHCG extracts produced at the pilot scale under optimal conditions greatly alleviated TNF-α/IFN-γ-induced TARC/CCL17 production compared with WG and RG extracts. Conclusions: Pesticide-free sHCG extracts, which contain high levels of CGA and the ginsenosides Re, Rg1, Rb1, and Rd as bioactive compounds, may have therapeutic potential for atopic diseases.
ISSN:1226-8453