Comparative Analysis of the Environmental Performance of Delivery Routes in the City Center and Peri-Urban Area of Madrid

Cities are experiencing a process of suburbanization and last-mile delivery has grown, worsening traffic congestion, pollutant emissions, and citizens’ quality of life. Based on a real-life case study, this research compares the environmental performance of different delivery routes carried out by D...

Full description

Bibliographic Details
Main Authors: Alessandra Boggio-Marzet, Andrés Monzón, Pablo Luque-Rodríguez, Daniel Álvarez-Mántaras
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/10/1233
Description
Summary:Cities are experiencing a process of suburbanization and last-mile delivery has grown, worsening traffic congestion, pollutant emissions, and citizens’ quality of life. Based on a real-life case study, this research compares the environmental performance of different delivery routes carried out by Diesel Light-Duty Vehicles (LDV) according to delivery area, city center or peri-urban. Some 242 delivery routes performed by thirteen drivers were recorded for one month, including instantaneous GPS position, speed, and other parameters (7262 km travelled). Four different delivery routes typologies were compared, and the drag function of the vehicles was characterized. It enabled calibration and modelling dynamics to calculate fuel consumption and pollutant emissions according to delivery routes. The results show that pedestrian crossings, traffic lights, and traffic congestion reduce the average operating speed by up to 57% in the city center and consequently overall energy efficiency. Our results highlight the urgency of replacing diesel LDV for deliveries in the city center with no-motorized transport modes and of implementing intermodality to cover deliveries in residential peri-urban areas. Due to low speeds and frequent start-stops, the efficiency of vehicles in these areas is reduced to a minimum and pollutant emissions increase. The outputs set a basis for recommendations for using LDV only for delivery routes with less traffic interruptions and foster intermodal solutions.
ISSN:2073-4433