Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders
Abstract Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemica...
Auteurs principaux: | Mani Valleti, Maxim Ziatdinov, Yongtao Liu, Sergei V. Kalinin |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Nature Portfolio
2024-08-01
|
Collection: | npj Computational Materials |
Accès en ligne: | https://doi.org/10.1038/s41524-024-01250-5 |
Documents similaires
-
Finding simplicity: unsupervised discovery of features, patterns, and order parameters via shift-invariant variational autoencoders
par: Maxim Ziatdinov, et autres
Publié: (2023-01-01) -
Combining variational autoencoders and physical bias for improved microscopy data analysis
par: Arpan Biswas, et autres
Publié: (2023-01-01) -
Optimizing training trajectories in variational autoencoders via latent Bayesian optimization approach
par: Arpan Biswas, et autres
Publié: (2023-01-01) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
par: Rama K. Vasudevan, et autres
Publié: (2021-01-01) -
Deep kernel methods learn better: from cards to process optimization
par: Mani Valleti, et autres
Publié: (2024-01-01)