Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders

Abstract Electron, optical, and scanning probe microscopy methods are generating ever increasing volume of image data containing information on atomic and mesoscale structures and functionalities. This necessitates the development of the machine learning methods for discovery of physical and chemica...

Description complète

Détails bibliographiques
Auteurs principaux: Mani Valleti, Maxim Ziatdinov, Yongtao Liu, Sergei V. Kalinin
Format: Article
Langue:English
Publié: Nature Portfolio 2024-08-01
Collection:npj Computational Materials
Accès en ligne:https://doi.org/10.1038/s41524-024-01250-5

Documents similaires