Epigenome‐Wide Association Study for All‐Cause Mortality in a Cardiovascular Cohort Identifies Differential Methylation in Castor Zinc Finger 1 (CASZ1)

Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome‐wide association study (EWAS) for all‐cause mortality with whole‐transcriptome data in a cardiovascular cohort (CATHGEN [Catheterization Genetics]). Methods and Res...

Full description

Bibliographic Details
Main Authors: Jawan W. Abdulrahim, Lydia Coulter Kwee, Elizabeth Grass, Ilene C. Siegler, Redford Williams, Ravi Karra, William E. Kraus, Simon G. Gregory, Svati H. Shah
Format: Article
Language:English
Published: Wiley 2019-11-01
Series:Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Subjects:
Online Access:https://www.ahajournals.org/doi/10.1161/JAHA.119.013228
Description
Summary:Background DNA methylation is implicated in many chronic diseases and may contribute to mortality. Therefore, we conducted an epigenome‐wide association study (EWAS) for all‐cause mortality with whole‐transcriptome data in a cardiovascular cohort (CATHGEN [Catheterization Genetics]). Methods and Results Cases were participants with mortality≥7 days postcatheterization whereas controls were alive with≥2 years of follow‐up. The Illumina Human Methylation 450K and EPIC arrays (Illumina, San Diego, CA) were used for the discovery and validation sets, respectively. A linear model approach with empirical Bayes estimators adjusted for confounders was used to assess difference in methylation (Δβ). In the discovery set (55 cases, 49 controls), 25 629 (6.5%) probes were differently methylated (P<0.05). In the validation set (108 cases, 108 controls), 3 probes were differentially methylated with a false discovery rate–adjusted P<0.10: cg08215811 (SLC4A9; log2 fold change=−0.14); cg17845532 (MATK; fold change=−0.26); and cg17944110 (castor zinc finger 1 [CASZ1]; FC=0.26; P<0.0001; false discovery rate–adjusted P=0.046–0.080). Meta‐analysis identified 6 probes (false discovery rate–adjusted P<0.05): the 3 above, cg20428720 (intergenic), cg17647904 (NCOR2), and cg23198793 (CAPN3). Messenger RNA expression of 2 MATK isoforms was lower in cases (fold change=−0.24 [P=0.007] and fold change=−0.61 [P=0.009]). The CASZ1, NCOR2, and CAPN3 transcripts did not show differential expression (P>0.05); the SLC4A9 transcript did not pass quality control. The cg17944110 probe is located within a potential regulatory element; expression of predicted targets (using GeneHancer) of the regulatory element, UBIAD1 (P=0.01) and CLSTN1 (P=0.03), were lower in cases. Conclusions We identified 6 novel methylation sites associated with all‐cause mortality. Methylation in CASZ1 may serve as a regulatory element associated with mortality in cardiovascular patients. Larger studies are necessary to confirm these observations.
ISSN:2047-9980