Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar

This work reports the application of a biochar (BC) derived from eucalyptus wood chips to remove pesticides (imidacloprid, acetamiprid and methomyl) from water. The pseudo-second order kinetic adsorption model is the best fit describing the adsorption of pesticides on BC. Furthermore, the Langmuir m...

Full description

Bibliographic Details
Main Authors: Assadawoot Srikhaow, Wasitthi Chaengsawang, Tanongkiat Kiatsiriroat, Puangrat Kajitvichyanukul, Siwaporn M. Smith
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/5/528
Description
Summary:This work reports the application of a biochar (BC) derived from eucalyptus wood chips to remove pesticides (imidacloprid, acetamiprid and methomyl) from water. The pseudo-second order kinetic adsorption model is the best fit describing the adsorption of pesticides on BC. Furthermore, the Langmuir model correlated well with the adsorption isotherm data for acetamiprid and methomyl, while the Freundlich model was selected to explain the adsorption of imidacloprid on BC. The maximum adsorption capacities for methomyl, imidacloprid and acetamiprid on the BC material are 32.42, 14.75 and 4.87 mg g<sup>−1</sup>, respectively. The highest adsorption capacity of methomyl on the BC surface could be the result of multilayer adsorption suggested by the adsorption isotherm studies, with imidacloprid (or acetamiprid) monolayer being adsorbed on the BC surface. The structure, functional groups of pesticides, including their polarity, all played an important role contributing to the performance of biochar sorbent. Preferable interactions between the studied pesticides and the BC surface may include π-π interactions and hydrogen bonding. The steric aromatic entity in adsorbed imidacloprid and acetamiprid on the BC surface may hinder the possibility of other pesticide molecules approaching the available sorption sites on the surface.
ISSN:2075-163X