Evaluation of Five Global Top-of-Atmosphere Outgoing Longwave Radiation Products

Five global monthly top-of-atmosphere (TOA) outgoing longwave radiation (OLR) products are evaluated in this study, including the products derived from the High-Resolution Infrared Radiation Sounder (HIRS), Clouds and the Earth’s Radiant Energy System (CERES), Advanced Very High Resolution Radiomete...

Full description

Bibliographic Details
Main Authors: Chuan Zhan, Jing Yang, Yan Li, Yong Chen, Zuohua Miao, Xiangyang Zeng, Jun Li
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/15/3722
Description
Summary:Five global monthly top-of-atmosphere (TOA) outgoing longwave radiation (OLR) products are evaluated in this study, including the products derived from the High-Resolution Infrared Radiation Sounder (HIRS), Clouds and the Earth’s Radiant Energy System (CERES), Advanced Very High Resolution Radiometer (AVHRR), the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data (CLARA), and the Global Energy and Water Cycle EXchanges (GEWEX) project. Results show that overall there is good consistency among these five products. Larger differences are found between GEWEX and CERES (HIRS) after (before) 2000 (RMSE ~ 5 W/m<sup>2</sup>), particularly in the tropical regions. In terms of global mean values, GEWEX shows large differences with the other products from the year 1992 to 2002, and CLARA shows large differences from the year 1979 to 1981, which are more obvious in the global ocean values. Large discrepancies among these products exist at low latitudinal bands, particularly before the year 2000. Australia and Asia (mid–low latitude part) are two typical regions in which larger differences are found.
ISSN:2072-4292