The Mie representation for Mercury’s magnetic field

Abstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for t...

Full description

Bibliographic Details
Main Authors: S. Toepfer, Y. Narita, K. -H. Glassmeier, D. Heyner, P. Kolhey, U. Motschmann, B. Langlais
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Earth, Planets and Space
Subjects:
Online Access:https://doi.org/10.1186/s40623-021-01386-4
_version_ 1818677579440193536
author S. Toepfer
Y. Narita
K. -H. Glassmeier
D. Heyner
P. Kolhey
U. Motschmann
B. Langlais
author_facet S. Toepfer
Y. Narita
K. -H. Glassmeier
D. Heyner
P. Kolhey
U. Motschmann
B. Langlais
author_sort S. Toepfer
collection DOAJ
description Abstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the analysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are reconstructed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using Capon’s method. Especially, it turns out that a high-precision determination of Mercury’s octupole field is expectable from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in reasonable agreement with the results from more conventional methods such as the least-square fit.
first_indexed 2024-12-17T09:01:37Z
format Article
id doaj.art-023c01657800467fa4432db170424e68
institution Directory Open Access Journal
issn 1880-5981
language English
last_indexed 2024-12-17T09:01:37Z
publishDate 2021-03-01
publisher SpringerOpen
record_format Article
series Earth, Planets and Space
spelling doaj.art-023c01657800467fa4432db170424e682022-12-21T21:55:42ZengSpringerOpenEarth, Planets and Space1880-59812021-03-0173111810.1186/s40623-021-01386-4The Mie representation for Mercury’s magnetic fieldS. Toepfer0Y. Narita1K. -H. Glassmeier2D. Heyner3P. Kolhey4U. Motschmann5B. Langlais6Institut für Theoretische Physik, Technische Universität BraunschweigSpace Research Institute, Austrian Academy of SciencesInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Theoretische Physik, Technische Universität BraunschweigLaboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Université d’AngersAbstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the analysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are reconstructed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using Capon’s method. Especially, it turns out that a high-precision determination of Mercury’s octupole field is expectable from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in reasonable agreement with the results from more conventional methods such as the least-square fit.https://doi.org/10.1186/s40623-021-01386-4Mie representationPoloidal and toroidal magnetic fieldsThin shell approximationGauss representationCapon’s method
spellingShingle S. Toepfer
Y. Narita
K. -H. Glassmeier
D. Heyner
P. Kolhey
U. Motschmann
B. Langlais
The Mie representation for Mercury’s magnetic field
Earth, Planets and Space
Mie representation
Poloidal and toroidal magnetic fields
Thin shell approximation
Gauss representation
Capon’s method
title The Mie representation for Mercury’s magnetic field
title_full The Mie representation for Mercury’s magnetic field
title_fullStr The Mie representation for Mercury’s magnetic field
title_full_unstemmed The Mie representation for Mercury’s magnetic field
title_short The Mie representation for Mercury’s magnetic field
title_sort mie representation for mercury s magnetic field
topic Mie representation
Poloidal and toroidal magnetic fields
Thin shell approximation
Gauss representation
Capon’s method
url https://doi.org/10.1186/s40623-021-01386-4
work_keys_str_mv AT stoepfer themierepresentationformercurysmagneticfield
AT ynarita themierepresentationformercurysmagneticfield
AT khglassmeier themierepresentationformercurysmagneticfield
AT dheyner themierepresentationformercurysmagneticfield
AT pkolhey themierepresentationformercurysmagneticfield
AT umotschmann themierepresentationformercurysmagneticfield
AT blanglais themierepresentationformercurysmagneticfield
AT stoepfer mierepresentationformercurysmagneticfield
AT ynarita mierepresentationformercurysmagneticfield
AT khglassmeier mierepresentationformercurysmagneticfield
AT dheyner mierepresentationformercurysmagneticfield
AT pkolhey mierepresentationformercurysmagneticfield
AT umotschmann mierepresentationformercurysmagneticfield
AT blanglais mierepresentationformercurysmagneticfield