The Mie representation for Mercury’s magnetic field
Abstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for t...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-03-01
|
Series: | Earth, Planets and Space |
Subjects: | |
Online Access: | https://doi.org/10.1186/s40623-021-01386-4 |
_version_ | 1818677579440193536 |
---|---|
author | S. Toepfer Y. Narita K. -H. Glassmeier D. Heyner P. Kolhey U. Motschmann B. Langlais |
author_facet | S. Toepfer Y. Narita K. -H. Glassmeier D. Heyner P. Kolhey U. Motschmann B. Langlais |
author_sort | S. Toepfer |
collection | DOAJ |
description | Abstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the analysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are reconstructed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using Capon’s method. Especially, it turns out that a high-precision determination of Mercury’s octupole field is expectable from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in reasonable agreement with the results from more conventional methods such as the least-square fit. |
first_indexed | 2024-12-17T09:01:37Z |
format | Article |
id | doaj.art-023c01657800467fa4432db170424e68 |
institution | Directory Open Access Journal |
issn | 1880-5981 |
language | English |
last_indexed | 2024-12-17T09:01:37Z |
publishDate | 2021-03-01 |
publisher | SpringerOpen |
record_format | Article |
series | Earth, Planets and Space |
spelling | doaj.art-023c01657800467fa4432db170424e682022-12-21T21:55:42ZengSpringerOpenEarth, Planets and Space1880-59812021-03-0173111810.1186/s40623-021-01386-4The Mie representation for Mercury’s magnetic fieldS. Toepfer0Y. Narita1K. -H. Glassmeier2D. Heyner3P. Kolhey4U. Motschmann5B. Langlais6Institut für Theoretische Physik, Technische Universität BraunschweigSpace Research Institute, Austrian Academy of SciencesInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Geophysik und extraterrestrische Physik, Technische Universität BraunschweigInstitut für Theoretische Physik, Technische Universität BraunschweigLaboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Université d’AngersAbstract The parameterization of the magnetospheric field contribution, generated by currents flowing in the magnetosphere is of major importance for the analysis of Mercury’s internal magnetic field. Using a combination of the Gauss and the Mie representation (toroidal–poloidal decomposition) for the parameterization of the magnetic field enables the analysis of magnetic field data measured in current carrying regions in the vicinity of Mercury. In view of the BepiColombo mission, the magnetic field resulting from the plasma interaction of Mercury with the solar wind is simulated with a hybrid simulation code and the internal Gauss coefficients for the dipole, quadrupole and octupole field are reconstructed from the data, evaluated along the prospective trajectories of the Mercury Planetary Orbiter (MPO) using Capon’s method. Especially, it turns out that a high-precision determination of Mercury’s octupole field is expectable from the future analysis of the magnetic field data measured by the magnetometer on board MPO. Furthermore, magnetic field data of the MESSENGER mission are analyzed and the reconstructed internal Gauss coefficients are in reasonable agreement with the results from more conventional methods such as the least-square fit.https://doi.org/10.1186/s40623-021-01386-4Mie representationPoloidal and toroidal magnetic fieldsThin shell approximationGauss representationCapon’s method |
spellingShingle | S. Toepfer Y. Narita K. -H. Glassmeier D. Heyner P. Kolhey U. Motschmann B. Langlais The Mie representation for Mercury’s magnetic field Earth, Planets and Space Mie representation Poloidal and toroidal magnetic fields Thin shell approximation Gauss representation Capon’s method |
title | The Mie representation for Mercury’s magnetic field |
title_full | The Mie representation for Mercury’s magnetic field |
title_fullStr | The Mie representation for Mercury’s magnetic field |
title_full_unstemmed | The Mie representation for Mercury’s magnetic field |
title_short | The Mie representation for Mercury’s magnetic field |
title_sort | mie representation for mercury s magnetic field |
topic | Mie representation Poloidal and toroidal magnetic fields Thin shell approximation Gauss representation Capon’s method |
url | https://doi.org/10.1186/s40623-021-01386-4 |
work_keys_str_mv | AT stoepfer themierepresentationformercurysmagneticfield AT ynarita themierepresentationformercurysmagneticfield AT khglassmeier themierepresentationformercurysmagneticfield AT dheyner themierepresentationformercurysmagneticfield AT pkolhey themierepresentationformercurysmagneticfield AT umotschmann themierepresentationformercurysmagneticfield AT blanglais themierepresentationformercurysmagneticfield AT stoepfer mierepresentationformercurysmagneticfield AT ynarita mierepresentationformercurysmagneticfield AT khglassmeier mierepresentationformercurysmagneticfield AT dheyner mierepresentationformercurysmagneticfield AT pkolhey mierepresentationformercurysmagneticfield AT umotschmann mierepresentationformercurysmagneticfield AT blanglais mierepresentationformercurysmagneticfield |