Sequential Normalization: Embracing Smaller Sample Sizes for Normalization

Normalization as a layer within neural networks has over the years demonstrated its effectiveness in neural network optimization across a wide range of different tasks, with one of the most successful approaches being that of batch normalization. The consensus is that better estimates of the BatchNo...

Full description

Bibliographic Details
Main Authors: Neofytos Dimitriou, Ognjen Arandjelović
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/13/7/337
_version_ 1827596934462832640
author Neofytos Dimitriou
Ognjen Arandjelović
author_facet Neofytos Dimitriou
Ognjen Arandjelović
author_sort Neofytos Dimitriou
collection DOAJ
description Normalization as a layer within neural networks has over the years demonstrated its effectiveness in neural network optimization across a wide range of different tasks, with one of the most successful approaches being that of batch normalization. The consensus is that better estimates of the BatchNorm normalization statistics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>σ</mi><mn>2</mn></msup></semantics></math></inline-formula>) in each mini-batch result in better optimization. In this work, we challenge this belief and experiment with a new variant of BatchNorm known as GhostNorm that, despite independently normalizing batches within the mini-batches, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>σ</mi><mn>2</mn></msup></semantics></math></inline-formula> are independently computed and applied to groups of samples in each mini-batch, outperforms BatchNorm consistently. Next, we introduce sequential normalization (SeqNorm), the sequential application of the above type of normalization across two dimensions of the input, and find that models trained with SeqNorm consistently outperform models trained with BatchNorm or GhostNorm on multiple image classification data sets. Our contributions are as follows: (i) we uncover a source of regularization that is unique to GhostNorm, and not simply an extension from BatchNorm, and illustrate its effects on the loss landscape, (ii) we introduce sequential normalization (SeqNorm) a new normalization layer that improves the regularization effects of GhostNorm, (iii) we compare both GhostNorm and SeqNorm against BatchNorm alone as well as with other regularization techniques, (iv) for both GhostNorm and SeqNorm models, we train models whose performance is consistently better than our baselines, including ones with BatchNorm, on the standard image classification data sets of CIFAR–10, CIFAR-100, and ImageNet ((<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.2</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.4</mn><mo>%</mo></mrow></semantics></math></inline-formula>), and (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1.1</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for GhostNorm and SeqNorm, respectively).
first_indexed 2024-03-09T03:19:59Z
format Article
id doaj.art-024c8e9bd4be4ca8b86851dacdc4fbcd
institution Directory Open Access Journal
issn 2078-2489
language English
last_indexed 2024-03-09T03:19:59Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Information
spelling doaj.art-024c8e9bd4be4ca8b86851dacdc4fbcd2023-12-03T15:11:15ZengMDPI AGInformation2078-24892022-07-0113733710.3390/info13070337Sequential Normalization: Embracing Smaller Sample Sizes for NormalizationNeofytos Dimitriou0Ognjen Arandjelović1School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UKSchool of Computer Science, University of St Andrews, St Andrews KY16 9SX, UKNormalization as a layer within neural networks has over the years demonstrated its effectiveness in neural network optimization across a wide range of different tasks, with one of the most successful approaches being that of batch normalization. The consensus is that better estimates of the BatchNorm normalization statistics (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>σ</mi><mn>2</mn></msup></semantics></math></inline-formula>) in each mini-batch result in better optimization. In this work, we challenge this belief and experiment with a new variant of BatchNorm known as GhostNorm that, despite independently normalizing batches within the mini-batches, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>σ</mi><mn>2</mn></msup></semantics></math></inline-formula> are independently computed and applied to groups of samples in each mini-batch, outperforms BatchNorm consistently. Next, we introduce sequential normalization (SeqNorm), the sequential application of the above type of normalization across two dimensions of the input, and find that models trained with SeqNorm consistently outperform models trained with BatchNorm or GhostNorm on multiple image classification data sets. Our contributions are as follows: (i) we uncover a source of regularization that is unique to GhostNorm, and not simply an extension from BatchNorm, and illustrate its effects on the loss landscape, (ii) we introduce sequential normalization (SeqNorm) a new normalization layer that improves the regularization effects of GhostNorm, (iii) we compare both GhostNorm and SeqNorm against BatchNorm alone as well as with other regularization techniques, (iv) for both GhostNorm and SeqNorm models, we train models whose performance is consistently better than our baselines, including ones with BatchNorm, on the standard image classification data sets of CIFAR–10, CIFAR-100, and ImageNet ((<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.2</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.4</mn><mo>%</mo></mrow></semantics></math></inline-formula>), and (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>0.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>+</mo><mn>1.1</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for GhostNorm and SeqNorm, respectively).https://www.mdpi.com/2078-2489/13/7/337batch normalizationghost normalizationloss landscapecomputer visionneural networksImageNet
spellingShingle Neofytos Dimitriou
Ognjen Arandjelović
Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
Information
batch normalization
ghost normalization
loss landscape
computer vision
neural networks
ImageNet
title Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
title_full Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
title_fullStr Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
title_full_unstemmed Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
title_short Sequential Normalization: Embracing Smaller Sample Sizes for Normalization
title_sort sequential normalization embracing smaller sample sizes for normalization
topic batch normalization
ghost normalization
loss landscape
computer vision
neural networks
ImageNet
url https://www.mdpi.com/2078-2489/13/7/337
work_keys_str_mv AT neofytosdimitriou sequentialnormalizationembracingsmallersamplesizesfornormalization
AT ognjenarandjelovic sequentialnormalizationembracingsmallersamplesizesfornormalization