Origins of Genetic Coding: Self-Guided Molecular Self-Organisation
The origin of genetic coding is characterised as an event of cosmic significance in which quantum mechanical causation was transcended by constructive computation. Computational causation entered the physico-chemical processes of the pre-biotic world by the incidental satisfaction of a condition of...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-08-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/25/9/1281 |
_version_ | 1827726209261240320 |
---|---|
author | Peter R. Wills |
author_facet | Peter R. Wills |
author_sort | Peter R. Wills |
collection | DOAJ |
description | The origin of genetic coding is characterised as an event of cosmic significance in which quantum mechanical causation was transcended by constructive computation. Computational causation entered the physico-chemical processes of the pre-biotic world by the incidental satisfaction of a condition of reflexivity between polymer sequence information and system elements able to facilitate their own production through translation of that information. This event, which has previously been modelled in the dynamics of Gene–Replication–Translation systems, is properly described as a process of self-guided self-organisation. The spontaneous emergence of a primordial genetic code between two-letter alphabets of nucleotide triplets and amino acids is easily possible, starting with random peptide synthesis that is RNA-sequence-dependent. The evident self-organising mechanism is the simultaneous quasi-species bifurcation of the populations of information-carrying genes and enzymes with aminoacyl-tRNA synthetase-like activities. This mechanism allowed the code to evolve very rapidly to the ~20 amino acid limit apparent for the reflexive differentiation of amino acid properties using protein catalysts. The self-organisation of semantics in this domain of physical chemistry conferred on emergent molecular biology exquisite computational control over the nanoscopic events needed for its self-construction. |
first_indexed | 2024-03-10T22:46:53Z |
format | Article |
id | doaj.art-0272974c042f4760bad32def66a859ff |
institution | Directory Open Access Journal |
issn | 1099-4300 |
language | English |
last_indexed | 2024-03-10T22:46:53Z |
publishDate | 2023-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Entropy |
spelling | doaj.art-0272974c042f4760bad32def66a859ff2023-11-19T10:35:26ZengMDPI AGEntropy1099-43002023-08-01259128110.3390/e25091281Origins of Genetic Coding: Self-Guided Molecular Self-OrganisationPeter R. Wills0Department of Physics, University of Auckland, Auckland PB 92019, New ZealandThe origin of genetic coding is characterised as an event of cosmic significance in which quantum mechanical causation was transcended by constructive computation. Computational causation entered the physico-chemical processes of the pre-biotic world by the incidental satisfaction of a condition of reflexivity between polymer sequence information and system elements able to facilitate their own production through translation of that information. This event, which has previously been modelled in the dynamics of Gene–Replication–Translation systems, is properly described as a process of self-guided self-organisation. The spontaneous emergence of a primordial genetic code between two-letter alphabets of nucleotide triplets and amino acids is easily possible, starting with random peptide synthesis that is RNA-sequence-dependent. The evident self-organising mechanism is the simultaneous quasi-species bifurcation of the populations of information-carrying genes and enzymes with aminoacyl-tRNA synthetase-like activities. This mechanism allowed the code to evolve very rapidly to the ~20 amino acid limit apparent for the reflexive differentiation of amino acid properties using protein catalysts. The self-organisation of semantics in this domain of physical chemistry conferred on emergent molecular biology exquisite computational control over the nanoscopic events needed for its self-construction.https://www.mdpi.com/1099-4300/25/9/1281mechanistic causationcomputationgenetic codingreflexivityreplicationtranslation |
spellingShingle | Peter R. Wills Origins of Genetic Coding: Self-Guided Molecular Self-Organisation Entropy mechanistic causation computation genetic coding reflexivity replication translation |
title | Origins of Genetic Coding: Self-Guided Molecular Self-Organisation |
title_full | Origins of Genetic Coding: Self-Guided Molecular Self-Organisation |
title_fullStr | Origins of Genetic Coding: Self-Guided Molecular Self-Organisation |
title_full_unstemmed | Origins of Genetic Coding: Self-Guided Molecular Self-Organisation |
title_short | Origins of Genetic Coding: Self-Guided Molecular Self-Organisation |
title_sort | origins of genetic coding self guided molecular self organisation |
topic | mechanistic causation computation genetic coding reflexivity replication translation |
url | https://www.mdpi.com/1099-4300/25/9/1281 |
work_keys_str_mv | AT peterrwills originsofgeneticcodingselfguidedmolecularselforganisation |