Horizontal Transfer of Antimicrobial Resistance by Extended-Spectrum β Lactamase-Producing Enterobacteriaceae

Background: The purpose of this work was to study the acquisition of new antibiotic-resistant genes carried by extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae via horizontal transfer to understand their rampant spread in the hospitals and in the community. Materials and...

Full description

Bibliographic Details
Main Author: Varsha K Vaidya
Format: Article
Language:English
Published: Thieme Medical and Scientific Publishers Pvt. Ltd. 2011-01-01
Series:Journal of Laboratory Physicians
Subjects:
Online Access:http://www.thieme-connect.de/DOI/DOI?10.4103/0974-2727.78563
Description
Summary:Background: The purpose of this work was to study the acquisition of new antibiotic-resistant genes carried by extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae via horizontal transfer to understand their rampant spread in the hospitals and in the community. Materials and Methods: A retrospective analysis of 120 ESBL screen-positive isolates of Escherichia coli and Klebsiella pneumoniae, which were subjected to antimicrobial susceptibility testing, was carried out. The Double Disc Synergy Test (DDST) and Inhibitor-Potentiation Disc Diffusion Test (IPDD) were employed for confirmation of ESBL activity. The transferability of the associated antibiotic resistance for amoxicillin, amikacin, gentamicin, cefotaxime and ceftriaxone was elucidated by intra- and intergenus conjugation in Escherichia coli under laboratory as well as under simulated environmental conditions. Transformation experiments using plasmids isolated by alkaline lysis method were performed to study the transferability of resistance genes in Klebsiella pneumoniae isolates. Results : ESBL production was indicated in 20% each of the Escherichia coli and Klebsiella pneumoniae isolates. All the ESBL isolates showed co- resistance to various other groups of antibiotics, including 3GC antibiotics, though all the isolates were sensitive to both the carbapenems tested. Conjugation-mediated transfer of resistance under laboratory as well as environmental conditions at a frequency of 3-4 x 10-5 , and transformation-mediated dissemination of cefotaxime and gentamicin resistance shed light on the propensity of ESBL producers for horizontal transfer. Conclusions: The transfer of resistant markers indicated availability of a large pool of resistance genes in the hospital setting as well as in the environment, facilitating long-term persistence of organisms.
ISSN:0974-2727
0974-7826