Summary: | Precise forecasting of thermal loads is a critical factor for economic and efficient operation of district heating and cooling networks. If thermal loads are known with high accuracy in advance, use of renewable energies can be maximized, and – in combination with thermal storage units – fossil generation, in particular in peaking units, can be avoided. Machine learning has proven to be a powerful tool for time series forecasting, and has demonstrated significant advancements in recent years. This paper presents the scientific methodology and first results of the publicly funded research project “deepDHC”, which aims at a broad benchmarking of traditional and advanced machine learning methods for thermal load forecasting in district heating and cooling applications. The analysis covers autoregressive forecasting approaches, decision trees such as “adaptive boosting”, but also latest “deep learning” techniques such as the “long short-term memory” (LSTM) neural network. This work is based on data from the district heating network of the city of Ulm in Germany. First, different performance metrics for evaluating forecasting qualities are introduced. Second, approaches for data screening and results of a linear and non-linear correlation analysis are presented. Third, the machine learning tuning process is described. For thermal load forecasting, weather data are key input parameters. This work uses hourly weather forecasts from weather models provided by the German meteorological service. These weather data are updated automatically, and have been statistically corrected in order to represent very accurate point forecasts for up to ten days ahead. In addition, a user-friendly web interface has been developed for use by the district heating network operator. The performance of different machine-learning algorithms is compared based on 72 h heating load forecasts.
|