Summary: | Although the role of inflammation and adverse cardiac remodeling in myocardial infarction (MI) have been extensively explored, gaps in knowledge on the complex interaction between these processes still exist. Data suggest that DNAX accessory molecule-1 (DNAM-1), an activating receptor implicated in NK cell education, may be involved in cardiac remodeling following coronary artery occlusion. In the present study, we aimed to explore the dynamic of DNAM-1+ monocytes and NK cells in peripheral blood in the early phase following reperfusion in patients with ST-elevation MI (STEMI). The study enrolled 49 patients older than 18 years of age diagnosed with STEMI, referred to primary percutaneous coronary intervention (pPCI). Blood samples were obtained at three distinct points (at admission, 3 h, and 24 h after pPCI) and analyzed using flow cytometry. The number of circulating DNAM-1+ monocytes (CD16++ and CD14++) and CD56dimCD16++NK cells was significantly reduced 3 h after pPCI and subsequently returned to initial levels 24 h after procedure (<i>p</i> = 0.003, <i>p</i> < 0.001, and <i>p</i> = 0.002, respectively). Notably, such dynamic was dependent on age of patients. A positive correlation between high sensitivity troponin I levels and number of CD16++DNAM-1+ monocytes in peripheral blood 3 h after pPCI was observed (r = 0.431, <i>p</i> = 0.003). In conclusion, in the present study we delineated the post-reperfusion dynamic of DNAM-1-expresing leukocytes. Additionally, we demonstrated that the number of CD16++ DNAM-1+ monocytes correlate with the extent of myocardial injury.
|