Quarter-Symmetric Metric Connection on a Cosymplectic Manifold

We study the quarter-symmetric metric <i>A</i>-connection on a cosymplectic manifold. Observing linearly independent curvature tensors with respect to the quarter-symmetric metric <i>A</i>-connection, we construct the Weyl projective curvature tensor on a cosymplectic manifol...

Full description

Bibliographic Details
Main Authors: Miroslav D. Maksimović, Milan Lj. Zlatanović
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/9/2209
_version_ 1827742820325130240
author Miroslav D. Maksimović
Milan Lj. Zlatanović
author_facet Miroslav D. Maksimović
Milan Lj. Zlatanović
author_sort Miroslav D. Maksimović
collection DOAJ
description We study the quarter-symmetric metric <i>A</i>-connection on a cosymplectic manifold. Observing linearly independent curvature tensors with respect to the quarter-symmetric metric <i>A</i>-connection, we construct the Weyl projective curvature tensor on a cosymplectic manifold. In this way, we obtain new conditions for the manifold to be projectively flat. At the end of the paper, we define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Einstein cosymplectic manifolds of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>-th kind and prove that they coincide with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Einstein cosymplectic manifold.
first_indexed 2024-03-11T04:11:45Z
format Article
id doaj.art-02ab7e3bdbf94f24baceb7f60098515d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:11:45Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-02ab7e3bdbf94f24baceb7f60098515d2023-11-17T23:21:25ZengMDPI AGMathematics2227-73902023-05-01119220910.3390/math11092209Quarter-Symmetric Metric Connection on a Cosymplectic ManifoldMiroslav D. Maksimović0Milan Lj. Zlatanović1Department of Mathematics, Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, 38220 Kosovska Mitrovica, SerbiaDepartment of Mathematics, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, SerbiaWe study the quarter-symmetric metric <i>A</i>-connection on a cosymplectic manifold. Observing linearly independent curvature tensors with respect to the quarter-symmetric metric <i>A</i>-connection, we construct the Weyl projective curvature tensor on a cosymplectic manifold. In this way, we obtain new conditions for the manifold to be projectively flat. At the end of the paper, we define <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Einstein cosymplectic manifolds of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>-th kind and prove that they coincide with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Einstein cosymplectic manifold.https://www.mdpi.com/2227-7390/11/9/2209almost-contact manifoldcosymplectic manifoldco-Kähler manifoldquarter-symmetric connection<i>η</i>-Einstein manifold
spellingShingle Miroslav D. Maksimović
Milan Lj. Zlatanović
Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
Mathematics
almost-contact manifold
cosymplectic manifold
co-Kähler manifold
quarter-symmetric connection
<i>η</i>-Einstein manifold
title Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
title_full Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
title_fullStr Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
title_full_unstemmed Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
title_short Quarter-Symmetric Metric Connection on a Cosymplectic Manifold
title_sort quarter symmetric metric connection on a cosymplectic manifold
topic almost-contact manifold
cosymplectic manifold
co-Kähler manifold
quarter-symmetric connection
<i>η</i>-Einstein manifold
url https://www.mdpi.com/2227-7390/11/9/2209
work_keys_str_mv AT miroslavdmaksimovic quartersymmetricmetricconnectiononacosymplecticmanifold
AT milanljzlatanovic quartersymmetricmetricconnectiononacosymplecticmanifold