An invertible, invariant crystal representation for inverse design of solid-state materials using generative deep learning

Abstract The past decade has witnessed rapid progress in deep learning for molecular design, owing to the availability of invertible and invariant representations for molecules such as simplified molecular-input line-entry system (SMILES), which has powered cheminformatics since the late 1980s. Howe...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Hang Xiao, Rong Li, Xiaoyang Shi, Yan Chen, Liangliang Zhu, Xi Chen, Lei Wang
Định dạng: Bài viết
Ngôn ngữ:English
Được phát hành: Nature Portfolio 2023-11-01
Loạt:Nature Communications
Truy cập trực tuyến:https://doi.org/10.1038/s41467-023-42870-7