Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens

Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on t...

Full description

Bibliographic Details
Main Authors: Dietmar Hammerschmid, Francesca Germani, Salvador I. Drusin, Charline Fagnen, Claudio D. Schuster, David Hoogewijs, Marcelo A. Marti, Catherine Venien-Bryan, Luc Moens, Sabine Van Doorslaer, Frank Sobott, Sylvia Dewilde
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037021001033
_version_ 1818979585460535296
author Dietmar Hammerschmid
Francesca Germani
Salvador I. Drusin
Charline Fagnen
Claudio D. Schuster
David Hoogewijs
Marcelo A. Marti
Catherine Venien-Bryan
Luc Moens
Sabine Van Doorslaer
Frank Sobott
Sylvia Dewilde
author_facet Dietmar Hammerschmid
Francesca Germani
Salvador I. Drusin
Charline Fagnen
Claudio D. Schuster
David Hoogewijs
Marcelo A. Marti
Catherine Venien-Bryan
Luc Moens
Sabine Van Doorslaer
Frank Sobott
Sylvia Dewilde
author_sort Dietmar Hammerschmid
collection DOAJ
description Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function.The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily.In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely.Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e−/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction.Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.
first_indexed 2024-12-20T17:01:52Z
format Article
id doaj.art-02c5fe5a57b54d7b85a3d980154a4e0b
institution Directory Open Access Journal
issn 2001-0370
language English
last_indexed 2024-12-20T17:01:52Z
publishDate 2021-01-01
publisher Elsevier
record_format Article
series Computational and Structural Biotechnology Journal
spelling doaj.art-02c5fe5a57b54d7b85a3d980154a4e0b2022-12-21T19:32:30ZengElsevierComputational and Structural Biotechnology Journal2001-03702021-01-011918741888Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducensDietmar Hammerschmid0Francesca Germani1Salvador I. Drusin2Charline Fagnen3Claudio D. Schuster4David Hoogewijs5Marcelo A. Marti6Catherine Venien-Bryan7Luc Moens8Sabine Van Doorslaer9Frank Sobott10Sylvia Dewilde11Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, BelgiumProteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumDepartamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, ArgentinaSorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, FranceDepartamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, ArgentinaSection of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, SwitzerlandDepartamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellòn 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, ArgentinaSorbonne Université, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, 75005 Paris, FranceProteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumBiophysics and Biomedical Physics, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Corresponding authors.Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, United Kingdom; Corresponding authors.Proteinchemistry, Proteomics and Epigenetic Signalling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, BelgiumGlobin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function.The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily.In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely.Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e−/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction.Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.http://www.sciencedirect.com/science/article/pii/S2001037021001033Globin-coupled sensorGeobacter sulfurreducensTransmembrane domainTransmembrane-coupled globins
spellingShingle Dietmar Hammerschmid
Francesca Germani
Salvador I. Drusin
Charline Fagnen
Claudio D. Schuster
David Hoogewijs
Marcelo A. Marti
Catherine Venien-Bryan
Luc Moens
Sabine Van Doorslaer
Frank Sobott
Sylvia Dewilde
Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
Computational and Structural Biotechnology Journal
Globin-coupled sensor
Geobacter sulfurreducens
Transmembrane domain
Transmembrane-coupled globins
title Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
title_full Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
title_fullStr Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
title_full_unstemmed Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
title_short Structural modeling of a novel membrane-bound globin-coupled sensor in Geobacter sulfurreducens
title_sort structural modeling of a novel membrane bound globin coupled sensor in geobacter sulfurreducens
topic Globin-coupled sensor
Geobacter sulfurreducens
Transmembrane domain
Transmembrane-coupled globins
url http://www.sciencedirect.com/science/article/pii/S2001037021001033
work_keys_str_mv AT dietmarhammerschmid structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT francescagermani structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT salvadoridrusin structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT charlinefagnen structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT claudiodschuster structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT davidhoogewijs structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT marceloamarti structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT catherinevenienbryan structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT lucmoens structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT sabinevandoorslaer structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT franksobott structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens
AT sylviadewilde structuralmodelingofanovelmembraneboundglobincoupledsensoringeobactersulfurreducens