Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers

Temperature oscillations can affect behaviors of living things. In this article, we describe the effect of triangle temperature oscillations on reversible nonequilibrium chemical reactions detected as concentration oscillations. When amplification through self-catalytic reactions is involved in the...

Full description

Bibliographic Details
Main Authors: Sheng Zhang, Ming Bao, Mieko Arisawa, Masahiko Yamaguchi
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/1/693
Description
Summary:Temperature oscillations can affect behaviors of living things. In this article, we describe the effect of triangle temperature oscillations on reversible nonequilibrium chemical reactions detected as concentration oscillations. When amplification through self-catalytic reactions is involved in the chemical reactions, concentration oscillations exhibit diverse nonequilibrium phenomena, which include equilibrium intersecting, equilibrium noncontact, and equilibrium sliding. Both stable and unstable concentration oscillations occur, during which repeated cycles provide the same and different concentration oscillations, respectively. Concentration oscillations are classified according to their waveforms in concentration/time profiles, the shapes of hysteresis curves in concentration/temperature profiles, the nature of self-catalytic reactions, and their relationships with equilibrium. An unstable concentration oscillation may be transformed into a stable concentration oscillation, which is described on the basis of the classifications. Experimental examples are shown using reversible association and dissociation reactions of helicene oligomers.
ISSN:1661-6596
1422-0067