Zavadskij modules over cluster-tilted algebras of type

Zavadskij modules are uniserial tame modules. They arose from interactions between the poset representation theory and the classification of general orders. The main problem is to characterize Zavadskij modules over a finite-dimensional algebra $ A $. In this setting, we prove that the indecomposabl...

Full description

Bibliographic Details
Main Authors: Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria
Format: Article
Language:English
Published: AIMS Press 2022-07-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2022175?viewType=HTML
_version_ 1811223804586754048
author Agustín Moreno Cañadas
Robinson-Julian Serna
Isaías David Marín Gaviria
author_facet Agustín Moreno Cañadas
Robinson-Julian Serna
Isaías David Marín Gaviria
author_sort Agustín Moreno Cañadas
collection DOAJ
description Zavadskij modules are uniserial tame modules. They arose from interactions between the poset representation theory and the classification of general orders. The main problem is to characterize Zavadskij modules over a finite-dimensional algebra $ A $. In this setting, we prove that the indecomposable uniserial $ A $-modules with a mast of multiplicity one in each vertex are Zavadskij modules. Since the Zavadskij property carries over to direct summands, but it is not invariant under the formation of direct sums, we give a criterion to determine when the direct sum of indecomposable Zavadskij modules is again a Zavadskij module. In addition, we use the triangulations of the $ n+3 $-gon associated with the cluster-tilted algebra of type $ \mathbb{A}_{n} $ to give a formula for the number of indecomposable Zavadskij modules over any cluster-tilted algebra of type $ \mathbb{A}_{n} $. In this case, the formula gives the dimension of the cluster-tilted algebra. As an application, we discuss some integer sequences in the OEIS (The On-Line Encyclopedia of Integer Sequences) that allow us to enumerate indecomposable Zavadskij modules.
first_indexed 2024-04-12T08:38:02Z
format Article
id doaj.art-02d0341d539d4779bd5c5959cb9ec721
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-04-12T08:38:02Z
publishDate 2022-07-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-02d0341d539d4779bd5c5959cb9ec7212022-12-22T03:39:57ZengAIMS PressElectronic Research Archive2688-15942022-07-013093435345110.3934/era.2022175Zavadskij modules over cluster-tilted algebras of type Agustín Moreno Cañadas0Robinson-Julian Serna1Isaías David Marín Gaviria 21. Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No 45-03, Bogotá 11001000, Colombia2. Escuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia2. Escuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, ColombiaZavadskij modules are uniserial tame modules. They arose from interactions between the poset representation theory and the classification of general orders. The main problem is to characterize Zavadskij modules over a finite-dimensional algebra $ A $. In this setting, we prove that the indecomposable uniserial $ A $-modules with a mast of multiplicity one in each vertex are Zavadskij modules. Since the Zavadskij property carries over to direct summands, but it is not invariant under the formation of direct sums, we give a criterion to determine when the direct sum of indecomposable Zavadskij modules is again a Zavadskij module. In addition, we use the triangulations of the $ n+3 $-gon associated with the cluster-tilted algebra of type $ \mathbb{A}_{n} $ to give a formula for the number of indecomposable Zavadskij modules over any cluster-tilted algebra of type $ \mathbb{A}_{n} $. In this case, the formula gives the dimension of the cluster-tilted algebra. As an application, we discuss some integer sequences in the OEIS (The On-Line Encyclopedia of Integer Sequences) that allow us to enumerate indecomposable Zavadskij modules.https://www.aimspress.com/article/doi/10.3934/era.2022175?viewType=HTMLalgorithm of differentiationcategorificationcluster-tilted algebra of type ainteger sequenceoeisquiver representationuniserial modulezavadskij module
spellingShingle Agustín Moreno Cañadas
Robinson-Julian Serna
Isaías David Marín Gaviria
Zavadskij modules over cluster-tilted algebras of type
Electronic Research Archive
algorithm of differentiation
categorification
cluster-tilted algebra of type a
integer sequence
oeis
quiver representation
uniserial module
zavadskij module
title Zavadskij modules over cluster-tilted algebras of type
title_full Zavadskij modules over cluster-tilted algebras of type
title_fullStr Zavadskij modules over cluster-tilted algebras of type
title_full_unstemmed Zavadskij modules over cluster-tilted algebras of type
title_short Zavadskij modules over cluster-tilted algebras of type
title_sort zavadskij modules over cluster tilted algebras of type
topic algorithm of differentiation
categorification
cluster-tilted algebra of type a
integer sequence
oeis
quiver representation
uniserial module
zavadskij module
url https://www.aimspress.com/article/doi/10.3934/era.2022175?viewType=HTML
work_keys_str_mv AT agustinmorenocanadas zavadskijmodulesoverclustertiltedalgebrasoftype
AT robinsonjulianserna zavadskijmodulesoverclustertiltedalgebrasoftype
AT isaiasdavidmaringaviria zavadskijmodulesoverclustertiltedalgebrasoftype