Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations

By means of the shooting method together with the maximum principle and the Kneser–Hukahara continuum theorem, the authors present the existence, uniqueness and qualitative properties of solutions to nonlinear second-order boundary value problem on the semi-infinite interval of the following type: $...

Full description

Bibliographic Details
Main Authors: Minghe Pei, Libo Wang, Xuezhe Lv
Format: Article
Language:English
Published: University of Szeged 2021-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8631
_version_ 1797830483712671744
author Minghe Pei
Libo Wang
Xuezhe Lv
author_facet Minghe Pei
Libo Wang
Xuezhe Lv
author_sort Minghe Pei
collection DOAJ
description By means of the shooting method together with the maximum principle and the Kneser–Hukahara continuum theorem, the authors present the existence, uniqueness and qualitative properties of solutions to nonlinear second-order boundary value problem on the semi-infinite interval of the following type: $$ \begin{cases} y''=f(x,y,y'),& x\in[0,\infty), \\ y'(0)=A,& y(\infty)=B \end{cases} $$ and $$ \begin{cases} y''=f(x,y,y'),& x\in[0,\infty), \\ y(0)=A,&y(\infty)=B, \end{cases} $$ where $A,B\in \mathbb{R}$, $f(x,y,z)$ is continuous on $[0,\infty)\times\mathbb{R}^2$. These results and the matching method are then applied to the search of solutions to the nonlinear second-order non-autonomous boundary value problem on the real line $$ \begin{cases} y''=f(x,y,y'), & x\in\mathbb{R} ,\\ y(-\infty)=A,& y(\infty)=B, \end{cases} $$ where $A\not=B$, $f(x,y,z)$ is continuous on $\mathbb{R}^3$. Moreover, some examples are given to illustrate the main results, in which a problem arising in the unsteady flow of power-law fluids is included.
first_indexed 2024-04-09T13:36:50Z
format Article
id doaj.art-02d82bd5aadf43f595981eed10beb248
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:50Z
publishDate 2021-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-02d82bd5aadf43f595981eed10beb2482023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-01-012021112110.14232/ejqtde.2021.1.18631Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equationsMinghe Pei0Libo Wang1Xuezhe Lv2Beihua University, Jilin City, P.R. ChinaBeihua University, Jilin City, P.R. ChinaBeihua University, Jilin City, P.R. ChinaBy means of the shooting method together with the maximum principle and the Kneser–Hukahara continuum theorem, the authors present the existence, uniqueness and qualitative properties of solutions to nonlinear second-order boundary value problem on the semi-infinite interval of the following type: $$ \begin{cases} y''=f(x,y,y'),& x\in[0,\infty), \\ y'(0)=A,& y(\infty)=B \end{cases} $$ and $$ \begin{cases} y''=f(x,y,y'),& x\in[0,\infty), \\ y(0)=A,&y(\infty)=B, \end{cases} $$ where $A,B\in \mathbb{R}$, $f(x,y,z)$ is continuous on $[0,\infty)\times\mathbb{R}^2$. These results and the matching method are then applied to the search of solutions to the nonlinear second-order non-autonomous boundary value problem on the real line $$ \begin{cases} y''=f(x,y,y'), & x\in\mathbb{R} ,\\ y(-\infty)=A,& y(\infty)=B, \end{cases} $$ where $A\not=B$, $f(x,y,z)$ is continuous on $\mathbb{R}^3$. Moreover, some examples are given to illustrate the main results, in which a problem arising in the unsteady flow of power-law fluids is included.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8631semi-infinite intervalheteroclinic solutionshooting methodmaximum principlekneser–hukahara continuum theoremmatching method
spellingShingle Minghe Pei
Libo Wang
Xuezhe Lv
Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
Electronic Journal of Qualitative Theory of Differential Equations
semi-infinite interval
heteroclinic solution
shooting method
maximum principle
kneser–hukahara continuum theorem
matching method
title Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
title_full Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
title_fullStr Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
title_full_unstemmed Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
title_short Existence, uniqueness and qualitative properties of heteroclinic solutions to nonlinear second-order ordinary differential equations
title_sort existence uniqueness and qualitative properties of heteroclinic solutions to nonlinear second order ordinary differential equations
topic semi-infinite interval
heteroclinic solution
shooting method
maximum principle
kneser–hukahara continuum theorem
matching method
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8631
work_keys_str_mv AT minghepei existenceuniquenessandqualitativepropertiesofheteroclinicsolutionstononlinearsecondorderordinarydifferentialequations
AT libowang existenceuniquenessandqualitativepropertiesofheteroclinicsolutionstononlinearsecondorderordinarydifferentialequations
AT xuezhelv existenceuniquenessandqualitativepropertiesofheteroclinicsolutionstononlinearsecondorderordinarydifferentialequations