Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-07-01
|
Series: | Frontiers in Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/full |
_version_ | 1827901865063350272 |
---|---|
author | Xin Mu Xin Mu Fu-Der Chen Fu-Der Chen Fu-Der Chen Ka My Dang Ka My Dang Michael G. K. Brunk Michael G. K. Brunk Jianfeng Li Jianfeng Li Hannes Wahn Andrei Stalmashonak Peisheng Ding Peisheng Ding Xianshu Luo Hongyao Chua Guo-Qiang Lo Joyce K. S. Poon Joyce K. S. Poon Joyce K. S. Poon Wesley D. Sacher Wesley D. Sacher |
author_facet | Xin Mu Xin Mu Fu-Der Chen Fu-Der Chen Fu-Der Chen Ka My Dang Ka My Dang Michael G. K. Brunk Michael G. K. Brunk Jianfeng Li Jianfeng Li Hannes Wahn Andrei Stalmashonak Peisheng Ding Peisheng Ding Xianshu Luo Hongyao Chua Guo-Qiang Lo Joyce K. S. Poon Joyce K. S. Poon Joyce K. S. Poon Wesley D. Sacher Wesley D. Sacher |
author_sort | Xin Mu |
collection | DOAJ |
description | Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue. |
first_indexed | 2024-03-12T23:50:54Z |
format | Article |
id | doaj.art-02eb7e7357b44d66b02e29a7b403bdf7 |
institution | Directory Open Access Journal |
issn | 1662-453X |
language | English |
last_indexed | 2024-03-12T23:50:54Z |
publishDate | 2023-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Neuroscience |
spelling | doaj.art-02eb7e7357b44d66b02e29a7b403bdf72023-07-13T13:59:21ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2023-07-011710.3389/fnins.2023.12132651213265Implantable photonic neural probes with 3D-printed microfluidics and applications to uncagingXin Mu0Xin Mu1Fu-Der Chen2Fu-Der Chen3Fu-Der Chen4Ka My Dang5Ka My Dang6Michael G. K. Brunk7Michael G. K. Brunk8Jianfeng Li9Jianfeng Li10Hannes Wahn11Andrei Stalmashonak12Peisheng Ding13Peisheng Ding14Xianshu Luo15Hongyao Chua16Guo-Qiang Lo17Joyce K. S. Poon18Joyce K. S. Poon19Joyce K. S. Poon20Wesley D. Sacher21Wesley D. Sacher22Max Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaAdvances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/fullneural probeneural interfaceimplantable device3D printingmicrofluidicslaser photolysis |
spellingShingle | Xin Mu Xin Mu Fu-Der Chen Fu-Der Chen Fu-Der Chen Ka My Dang Ka My Dang Michael G. K. Brunk Michael G. K. Brunk Jianfeng Li Jianfeng Li Hannes Wahn Andrei Stalmashonak Peisheng Ding Peisheng Ding Xianshu Luo Hongyao Chua Guo-Qiang Lo Joyce K. S. Poon Joyce K. S. Poon Joyce K. S. Poon Wesley D. Sacher Wesley D. Sacher Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging Frontiers in Neuroscience neural probe neural interface implantable device 3D printing microfluidics laser photolysis |
title | Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging |
title_full | Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging |
title_fullStr | Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging |
title_full_unstemmed | Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging |
title_short | Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging |
title_sort | implantable photonic neural probes with 3d printed microfluidics and applications to uncaging |
topic | neural probe neural interface implantable device 3D printing microfluidics laser photolysis |
url | https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/full |
work_keys_str_mv | AT xinmu implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT xinmu implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT kamydang implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT kamydang implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT michaelgkbrunk implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT michaelgkbrunk implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT jianfengli implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT jianfengli implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT hanneswahn implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT andreistalmashonak implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT peishengding implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT peishengding implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT xianshuluo implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT hongyaochua implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT guoqianglo implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT wesleydsacher implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging AT wesleydsacher implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging |