Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging

Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further...

Full description

Bibliographic Details
Main Authors: Xin Mu, Fu-Der Chen, Ka My Dang, Michael G. K. Brunk, Jianfeng Li, Hannes Wahn, Andrei Stalmashonak, Peisheng Ding, Xianshu Luo, Hongyao Chua, Guo-Qiang Lo, Joyce K. S. Poon, Wesley D. Sacher
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-07-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/full
_version_ 1827901865063350272
author Xin Mu
Xin Mu
Fu-Der Chen
Fu-Der Chen
Fu-Der Chen
Ka My Dang
Ka My Dang
Michael G. K. Brunk
Michael G. K. Brunk
Jianfeng Li
Jianfeng Li
Hannes Wahn
Andrei Stalmashonak
Peisheng Ding
Peisheng Ding
Xianshu Luo
Hongyao Chua
Guo-Qiang Lo
Joyce K. S. Poon
Joyce K. S. Poon
Joyce K. S. Poon
Wesley D. Sacher
Wesley D. Sacher
author_facet Xin Mu
Xin Mu
Fu-Der Chen
Fu-Der Chen
Fu-Der Chen
Ka My Dang
Ka My Dang
Michael G. K. Brunk
Michael G. K. Brunk
Jianfeng Li
Jianfeng Li
Hannes Wahn
Andrei Stalmashonak
Peisheng Ding
Peisheng Ding
Xianshu Luo
Hongyao Chua
Guo-Qiang Lo
Joyce K. S. Poon
Joyce K. S. Poon
Joyce K. S. Poon
Wesley D. Sacher
Wesley D. Sacher
author_sort Xin Mu
collection DOAJ
description Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.
first_indexed 2024-03-12T23:50:54Z
format Article
id doaj.art-02eb7e7357b44d66b02e29a7b403bdf7
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-03-12T23:50:54Z
publishDate 2023-07-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-02eb7e7357b44d66b02e29a7b403bdf72023-07-13T13:59:21ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2023-07-011710.3389/fnins.2023.12132651213265Implantable photonic neural probes with 3D-printed microfluidics and applications to uncagingXin Mu0Xin Mu1Fu-Der Chen2Fu-Der Chen3Fu-Der Chen4Ka My Dang5Ka My Dang6Michael G. K. Brunk7Michael G. K. Brunk8Jianfeng Li9Jianfeng Li10Hannes Wahn11Andrei Stalmashonak12Peisheng Ding13Peisheng Ding14Xianshu Luo15Hongyao Chua16Guo-Qiang Lo17Joyce K. S. Poon18Joyce K. S. Poon19Joyce K. S. Poon20Wesley D. Sacher21Wesley D. Sacher22Max Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeAdvanced Micro Foundry Pte. Ltd., Singapore, SingaporeMax Planck Institute of Microstructure Physics, Halle, GermanyDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, ON, CanadaMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaMax Planck Institute of Microstructure Physics, Halle, GermanyMax Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON, CanadaAdvances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in fixed brain tissue.https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/fullneural probeneural interfaceimplantable device3D printingmicrofluidicslaser photolysis
spellingShingle Xin Mu
Xin Mu
Fu-Der Chen
Fu-Der Chen
Fu-Der Chen
Ka My Dang
Ka My Dang
Michael G. K. Brunk
Michael G. K. Brunk
Jianfeng Li
Jianfeng Li
Hannes Wahn
Andrei Stalmashonak
Peisheng Ding
Peisheng Ding
Xianshu Luo
Hongyao Chua
Guo-Qiang Lo
Joyce K. S. Poon
Joyce K. S. Poon
Joyce K. S. Poon
Wesley D. Sacher
Wesley D. Sacher
Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
Frontiers in Neuroscience
neural probe
neural interface
implantable device
3D printing
microfluidics
laser photolysis
title Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
title_full Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
title_fullStr Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
title_full_unstemmed Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
title_short Implantable photonic neural probes with 3D-printed microfluidics and applications to uncaging
title_sort implantable photonic neural probes with 3d printed microfluidics and applications to uncaging
topic neural probe
neural interface
implantable device
3D printing
microfluidics
laser photolysis
url https://www.frontiersin.org/articles/10.3389/fnins.2023.1213265/full
work_keys_str_mv AT xinmu implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT xinmu implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT fuderchen implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT kamydang implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT kamydang implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT michaelgkbrunk implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT michaelgkbrunk implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT jianfengli implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT jianfengli implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT hanneswahn implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT andreistalmashonak implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT peishengding implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT peishengding implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT xianshuluo implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT hongyaochua implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT guoqianglo implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT joycekspoon implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT wesleydsacher implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging
AT wesleydsacher implantablephotonicneuralprobeswith3dprintedmicrofluidicsandapplicationstouncaging