On the local behavior of local weak solutions to some singular anisotropic elliptic equations

We study the local behavior of bounded local weak solutions to a class of anisotropic singular equations of the kind ∑i=1s∂iiu+∑i=s+1N∂i(Ai(x,u,∇u))=0,x∈Ω⊂⊂RNfor1≤s≤(N−1),\mathop{\sum }\limits_{i=1}^{s}{\partial }_{ii}u+\mathop{\sum }\limits_{i=s+1}^{N}{\partial }_{i}({A}_{i}\left(x,u,\nabla u))=0,\...

Full description

Bibliographic Details
Main Authors: Ciani Simone, Skrypnik Igor I., Vespri Vincenzo
Format: Article
Language:English
Published: De Gruyter 2022-09-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2022-0275
_version_ 1811205267520487424
author Ciani Simone
Skrypnik Igor I.
Vespri Vincenzo
author_facet Ciani Simone
Skrypnik Igor I.
Vespri Vincenzo
author_sort Ciani Simone
collection DOAJ
description We study the local behavior of bounded local weak solutions to a class of anisotropic singular equations of the kind ∑i=1s∂iiu+∑i=s+1N∂i(Ai(x,u,∇u))=0,x∈Ω⊂⊂RNfor1≤s≤(N−1),\mathop{\sum }\limits_{i=1}^{s}{\partial }_{ii}u+\mathop{\sum }\limits_{i=s+1}^{N}{\partial }_{i}({A}_{i}\left(x,u,\nabla u))=0,\hspace{1.0em}x\in \Omega \subset \hspace{-0.3em}\subset \hspace{0.33em}{{\mathbb{R}}}^{N}\hspace{1.0em}\hspace{0.1em}\text{for}\hspace{0.1em}\hspace{0.33em}1\le s\le \left(N-1), where each operator Ai{A}_{i} behaves directionally as the singular pp-Laplacian, 1<p<21\lt p\lt 2. Throughout a parabolic approach to expansion of positivity we obtain the interior Hölder continuity and some integral and pointwise Harnack inequalities.
first_indexed 2024-04-12T03:27:55Z
format Article
id doaj.art-0300f9efc3004defa669c72ad0e55a5b
institution Directory Open Access Journal
issn 2191-950X
language English
last_indexed 2024-04-12T03:27:55Z
publishDate 2022-09-01
publisher De Gruyter
record_format Article
series Advances in Nonlinear Analysis
spelling doaj.art-0300f9efc3004defa669c72ad0e55a5b2022-12-22T03:49:37ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2022-09-0112123726510.1515/anona-2022-0275On the local behavior of local weak solutions to some singular anisotropic elliptic equationsCiani Simone0Skrypnik Igor I.1Vespri Vincenzo2Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, GermanyInstitute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Gen. Batiouk Str. 19, 84116 Sloviansk, UkraineDipartimento di Matematica e Informatica “Ulisse Dini” Viale G. Morgagni, Università degli Studi di Firenze, 67/a, 50134 Firenze, ItalyWe study the local behavior of bounded local weak solutions to a class of anisotropic singular equations of the kind ∑i=1s∂iiu+∑i=s+1N∂i(Ai(x,u,∇u))=0,x∈Ω⊂⊂RNfor1≤s≤(N−1),\mathop{\sum }\limits_{i=1}^{s}{\partial }_{ii}u+\mathop{\sum }\limits_{i=s+1}^{N}{\partial }_{i}({A}_{i}\left(x,u,\nabla u))=0,\hspace{1.0em}x\in \Omega \subset \hspace{-0.3em}\subset \hspace{0.33em}{{\mathbb{R}}}^{N}\hspace{1.0em}\hspace{0.1em}\text{for}\hspace{0.1em}\hspace{0.33em}1\le s\le \left(N-1), where each operator Ai{A}_{i} behaves directionally as the singular pp-Laplacian, 1<p<21\lt p\lt 2. Throughout a parabolic approach to expansion of positivity we obtain the interior Hölder continuity and some integral and pointwise Harnack inequalities.https://doi.org/10.1515/anona-2022-0275anisotropic p-laplaciansingular parabolic equationshölder continuityintrinsic scalingexpansion of positivityintrinsic harnack inequality35j7535k9235b65
spellingShingle Ciani Simone
Skrypnik Igor I.
Vespri Vincenzo
On the local behavior of local weak solutions to some singular anisotropic elliptic equations
Advances in Nonlinear Analysis
anisotropic p-laplacian
singular parabolic equations
hölder continuity
intrinsic scaling
expansion of positivity
intrinsic harnack inequality
35j75
35k92
35b65
title On the local behavior of local weak solutions to some singular anisotropic elliptic equations
title_full On the local behavior of local weak solutions to some singular anisotropic elliptic equations
title_fullStr On the local behavior of local weak solutions to some singular anisotropic elliptic equations
title_full_unstemmed On the local behavior of local weak solutions to some singular anisotropic elliptic equations
title_short On the local behavior of local weak solutions to some singular anisotropic elliptic equations
title_sort on the local behavior of local weak solutions to some singular anisotropic elliptic equations
topic anisotropic p-laplacian
singular parabolic equations
hölder continuity
intrinsic scaling
expansion of positivity
intrinsic harnack inequality
35j75
35k92
35b65
url https://doi.org/10.1515/anona-2022-0275
work_keys_str_mv AT cianisimone onthelocalbehavioroflocalweaksolutionstosomesingularanisotropicellipticequations
AT skrypnikigori onthelocalbehavioroflocalweaksolutionstosomesingularanisotropicellipticequations
AT vesprivincenzo onthelocalbehavioroflocalweaksolutionstosomesingularanisotropicellipticequations