Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions

The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means of pseudo-order relation ( <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" dis...

Full description

Bibliographic Details
Main Authors: Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/1/6
_version_ 1797493952351305728
author Muhammad Bilal Khan
Savin Treanțǎ
Mohamed S. Soliman
Kamsing Nonlaopon
Hatim Ghazi Zaini
author_facet Muhammad Bilal Khan
Savin Treanțǎ
Mohamed S. Soliman
Kamsing Nonlaopon
Hatim Ghazi Zaini
author_sort Muhammad Bilal Khan
collection DOAJ
description The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means of pseudo-order relation ( <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow></semantics></math></inline-formula> ). This order relation is defined on interval space. We have proved that if the interval-valued function is LR-convex then the inclusion relation “ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>⊆</mo></semantics></math></inline-formula> ” coincident to pseudo-order relation “ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow></semantics></math></inline-formula> ” under some suitable conditions. Moreover, the interval Hermite–Hadamard–Fejér inequality is also derived for LR-convex interval-valued functions. These inequalities also generalize some new and known results. Useful examples that verify the applicability of the theory developed in this study are presented. The concepts and techniques of this paper may be a starting point for further research in this area.
first_indexed 2024-03-10T01:27:22Z
format Article
id doaj.art-03061f107d0c413482dd3c85ea70bc0b
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-10T01:27:22Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-03061f107d0c413482dd3c85ea70bc0b2023-11-23T13:48:31ZengMDPI AGFractal and Fractional2504-31102021-12-0161610.3390/fractalfract6010006Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued FunctionsMuhammad Bilal Khan0Savin Treanțǎ1Mohamed S. Soliman2Kamsing Nonlaopon3Hatim Ghazi Zaini4Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, PakistanDepartment of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, RomaniaDepartment of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi ArabiaThe purpose of this study is to introduce the new class of Hermite–Hadamard inequality for LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means of pseudo-order relation ( <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow></semantics></math></inline-formula> ). This order relation is defined on interval space. We have proved that if the interval-valued function is LR-convex then the inclusion relation “ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>⊆</mo></semantics></math></inline-formula> ” coincident to pseudo-order relation “ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>≤</mo><mi>p</mi></msub></mrow></semantics></math></inline-formula> ” under some suitable conditions. Moreover, the interval Hermite–Hadamard–Fejér inequality is also derived for LR-convex interval-valued functions. These inequalities also generalize some new and known results. Useful examples that verify the applicability of the theory developed in this study are presented. The concepts and techniques of this paper may be a starting point for further research in this area.https://www.mdpi.com/2504-3110/6/1/6interval-valued functionRiemann integralLR-convex interval-valued functioninterval Hermite–Hadamard inequalityinterval Hermite–Hadamard–Fejér inequality
spellingShingle Muhammad Bilal Khan
Savin Treanțǎ
Mohamed S. Soliman
Kamsing Nonlaopon
Hatim Ghazi Zaini
Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
Fractal and Fractional
interval-valued function
Riemann integral
LR-convex interval-valued function
interval Hermite–Hadamard inequality
interval Hermite–Hadamard–Fejér inequality
title Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
title_full Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
title_fullStr Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
title_full_unstemmed Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
title_short Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions
title_sort some hadamard fejer type inequalities for lr convex interval valued functions
topic interval-valued function
Riemann integral
LR-convex interval-valued function
interval Hermite–Hadamard inequality
interval Hermite–Hadamard–Fejér inequality
url https://www.mdpi.com/2504-3110/6/1/6
work_keys_str_mv AT muhammadbilalkhan somehadamardfejertypeinequalitiesforlrconvexintervalvaluedfunctions
AT savintreanta somehadamardfejertypeinequalitiesforlrconvexintervalvaluedfunctions
AT mohamedssoliman somehadamardfejertypeinequalitiesforlrconvexintervalvaluedfunctions
AT kamsingnonlaopon somehadamardfejertypeinequalitiesforlrconvexintervalvaluedfunctions
AT hatimghazizaini somehadamardfejertypeinequalitiesforlrconvexintervalvaluedfunctions