Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR
Profiles of aerosols and cloud layers have been investigated over a high-altitude urban atmosphere in the eastern Himalayas in India, for the first time, using a Raman LIDAR. The study was conducted post-monsoon season over Darjeeling (latitude 27°01<inline-formula><math xmlns="http://...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/14/7/1102 |
_version_ | 1797590273519255552 |
---|---|
author | Trishna Bhattacharyya Abhijit Chatterjee Sanat K. Das Soumendra Singh Sanjay K. Ghosh |
author_facet | Trishna Bhattacharyya Abhijit Chatterjee Sanat K. Das Soumendra Singh Sanjay K. Ghosh |
author_sort | Trishna Bhattacharyya |
collection | DOAJ |
description | Profiles of aerosols and cloud layers have been investigated over a high-altitude urban atmosphere in the eastern Himalayas in India, for the first time, using a Raman LIDAR. The study was conducted post-monsoon season over Darjeeling (latitude 27°01<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> N longitude 88°36<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> E, 2200 masl), a tourist destination in north-eastern India. In addition to the aerosols and cloud characterization and atmospheric boundary layer detection, the profile of the water vapor mixing ratio has also been analyzed. Effects of atmospheric dynamics have been studied using the vertical profiles of the normalized standard deviation of RCS along with the water vapor mixing ratio. The aerosol optical characteristics below and above the Atmospheric Boundary Layer (ABL) region were studied separately, along with the interrelation of their optical and microphysical properties with synoptic meteorological parameters. The backscatter coefficient and the extinction coefficient were found in the range from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.15</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.01</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.02</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.28</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively. The LIDAR ratio varies between 3.9 to 78.39 sr over all altitudes. The variation of the linear depolarization ratio from 0.19 to 0.32 indicates the dominance, of non-spherical particles. The periodicity observed in different parameters may be indicative of atmospheric wave phenomena. Cloud parameters, such as scattering coefficients, top and bottom height, and optical depth for different cloud phases, have been evaluated. A co-located Micro Rain Radar has been used with LIDAR for cloud life cycle study. |
first_indexed | 2024-03-11T01:19:12Z |
format | Article |
id | doaj.art-03155128094e43609a5a49f4f9b6434f |
institution | Directory Open Access Journal |
issn | 2073-4433 |
language | English |
last_indexed | 2024-03-11T01:19:12Z |
publishDate | 2023-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Atmosphere |
spelling | doaj.art-03155128094e43609a5a49f4f9b6434f2023-11-18T18:15:31ZengMDPI AGAtmosphere2073-44332023-06-01147110210.3390/atmos14071102Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDARTrishna Bhattacharyya0Abhijit Chatterjee1Sanat K. Das2Soumendra Singh3Sanjay K. Ghosh4Centre for Astroparticle Physics and Space Science, Bose Institute, Sector V, Salt Lake, Kolkata 700091, IndiaEnvironmental Science Section, Centenary Building, Bose Institute, P-1/12, CIT Road Scheme VIIM, Kolkata 700054, IndiaEnvironmental Science Section, Centenary Building, Bose Institute, P-1/12, CIT Road Scheme VIIM, Kolkata 700054, IndiaCentre for Astroparticle Physics and Space Science, Bose Institute, Sector V, Salt Lake, Kolkata 700091, IndiaCentre for Astroparticle Physics and Space Science, Bose Institute, Sector V, Salt Lake, Kolkata 700091, IndiaProfiles of aerosols and cloud layers have been investigated over a high-altitude urban atmosphere in the eastern Himalayas in India, for the first time, using a Raman LIDAR. The study was conducted post-monsoon season over Darjeeling (latitude 27°01<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> N longitude 88°36<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>′</mo></msup></semantics></math></inline-formula> E, 2200 masl), a tourist destination in north-eastern India. In addition to the aerosols and cloud characterization and atmospheric boundary layer detection, the profile of the water vapor mixing ratio has also been analyzed. Effects of atmospheric dynamics have been studied using the vertical profiles of the normalized standard deviation of RCS along with the water vapor mixing ratio. The aerosol optical characteristics below and above the Atmospheric Boundary Layer (ABL) region were studied separately, along with the interrelation of their optical and microphysical properties with synoptic meteorological parameters. The backscatter coefficient and the extinction coefficient were found in the range from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.15</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.01</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> sr<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.02</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.28</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> m<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively. The LIDAR ratio varies between 3.9 to 78.39 sr over all altitudes. The variation of the linear depolarization ratio from 0.19 to 0.32 indicates the dominance, of non-spherical particles. The periodicity observed in different parameters may be indicative of atmospheric wave phenomena. Cloud parameters, such as scattering coefficients, top and bottom height, and optical depth for different cloud phases, have been evaluated. A co-located Micro Rain Radar has been used with LIDAR for cloud life cycle study.https://www.mdpi.com/2073-4433/14/7/1102Raman LIDAREastern Himalayabackscattering coefficientextinction coefficientwater vapor mixingperiodicity analysis |
spellingShingle | Trishna Bhattacharyya Abhijit Chatterjee Sanat K. Das Soumendra Singh Sanjay K. Ghosh Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR Atmosphere Raman LIDAR Eastern Himalaya backscattering coefficient extinction coefficient water vapor mixing periodicity analysis |
title | Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR |
title_full | Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR |
title_fullStr | Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR |
title_full_unstemmed | Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR |
title_short | Profiling of Aerosols and Clouds over High Altitude Urban Atmosphere in Eastern Himalaya: A Ground-Based Observation Using Raman LIDAR |
title_sort | profiling of aerosols and clouds over high altitude urban atmosphere in eastern himalaya a ground based observation using raman lidar |
topic | Raman LIDAR Eastern Himalaya backscattering coefficient extinction coefficient water vapor mixing periodicity analysis |
url | https://www.mdpi.com/2073-4433/14/7/1102 |
work_keys_str_mv | AT trishnabhattacharyya profilingofaerosolsandcloudsoverhighaltitudeurbanatmosphereineasternhimalayaagroundbasedobservationusingramanlidar AT abhijitchatterjee profilingofaerosolsandcloudsoverhighaltitudeurbanatmosphereineasternhimalayaagroundbasedobservationusingramanlidar AT sanatkdas profilingofaerosolsandcloudsoverhighaltitudeurbanatmosphereineasternhimalayaagroundbasedobservationusingramanlidar AT soumendrasingh profilingofaerosolsandcloudsoverhighaltitudeurbanatmosphereineasternhimalayaagroundbasedobservationusingramanlidar AT sanjaykghosh profilingofaerosolsandcloudsoverhighaltitudeurbanatmosphereineasternhimalayaagroundbasedobservationusingramanlidar |