Summary: | In this paper, we construct the bivariate Szász–Jakimovski–Leviatan-type operators in Dunkl form using the unbounded sequences <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>β</mi><mi>m</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ξ</mi><mi>m</mi></msub></semantics></math></inline-formula> of positive numbers. Then, we obtain the rate of convergence in terms of the weighted modulus of continuity of two variables and weighted approximation theorems for our operators. Moreover, we provide the degree of convergence with the help of bivariate Lipschitz-maximal functions and obtain the direct theorem.
|