<it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited
<p>Abstract</p> <p>This paper performs a further investigation on the <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010), some incorrect properties are revised. It i...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://www.advancesindifferenceequations.com/content/2011/1/33 |
_version_ | 1818443973539135488 |
---|---|
author | Kim Taekyun Lee Byungje Ryoo Cheon |
author_facet | Kim Taekyun Lee Byungje Ryoo Cheon |
author_sort | Kim Taekyun |
collection | DOAJ |
description | <p>Abstract</p> <p>This paper performs a further investigation on the <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010), some incorrect properties are revised. It is point out that the generating function for the <it>q</it>-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math <b>48</b>, 73-86, 1994) (see Equation 9), some new generating functions for the <it>q</it>-Bernoulli numbers and polynomials are shown.</p> <p><b>Mathematics Subject Classification (2000) </b>11B68, 11S40, 11S80</p> |
first_indexed | 2024-12-14T19:08:33Z |
format | Article |
id | doaj.art-0331a9a4ff3c4be88100262fcee67dc4 |
institution | Directory Open Access Journal |
issn | 1687-1839 1687-1847 |
language | English |
last_indexed | 2024-12-14T19:08:33Z |
publishDate | 2011-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Advances in Difference Equations |
spelling | doaj.art-0331a9a4ff3c4be88100262fcee67dc42022-12-21T22:50:47ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472011-01-012011133<it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisitedKim TaekyunLee ByungjeRyoo Cheon<p>Abstract</p> <p>This paper performs a further investigation on the <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010), some incorrect properties are revised. It is point out that the generating function for the <it>q</it>-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math <b>48</b>, 73-86, 1994) (see Equation 9), some new generating functions for the <it>q</it>-Bernoulli numbers and polynomials are shown.</p> <p><b>Mathematics Subject Classification (2000) </b>11B68, 11S40, 11S80</p>http://www.advancesindifferenceequations.com/content/2011/1/33Bernoulli numbers and polynomials<it>q</it>-Bernoulli numbers and polynomials<it>q</it>-Bernoulli numbers and polynomials |
spellingShingle | Kim Taekyun Lee Byungje Ryoo Cheon <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited Advances in Difference Equations Bernoulli numbers and polynomials <it>q</it>-Bernoulli numbers and polynomials <it>q</it>-Bernoulli numbers and polynomials |
title | <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited |
title_full | <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited |
title_fullStr | <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited |
title_full_unstemmed | <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited |
title_short | <it>q</it>-Bernoulli numbers and <it>q</it>-Bernoulli polynomials revisited |
title_sort | it q it bernoulli numbers and it q it bernoulli polynomials revisited |
topic | Bernoulli numbers and polynomials <it>q</it>-Bernoulli numbers and polynomials <it>q</it>-Bernoulli numbers and polynomials |
url | http://www.advancesindifferenceequations.com/content/2011/1/33 |
work_keys_str_mv | AT kimtaekyun itqitbernoullinumbersanditqitbernoullipolynomialsrevisited AT leebyungje itqitbernoullinumbersanditqitbernoullipolynomialsrevisited AT ryoocheon itqitbernoullinumbersanditqitbernoullipolynomialsrevisited |